Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Feb;10(2):219–230. doi: 10.1105/tpc.10.2.219

An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation.

R Azpiroz 1, Y Wu 1, J C LoCascio 1, K A Feldmann 1
PMCID: PMC143978  PMID: 9490745

Abstract

Cell elongation is a developmental process that is regulated by light and phytohormones and is of critical importance for plant growth. Mutants defective in their response to light and various hormones are often dwarfs. The dwarfed phenotype results because of a failure in normal cell elongation. Little is known, however, about the basis of dwarfism as a common element in these diverse signaling pathways and the nature of the cellular functions responsible for cell elongation. Here, we describe an Arabidopsis mutant, dwarf4 (dwf4), whose phenotype can be rescued with exogenously supplied brassinolide. dwf4 mutants display features of light-regulatory mutants, but the dwarfed phenotype is entirely and specifically brassinosteroid dependent; no other hormone can rescue dwf4 to a wild-type phenotype. Therefore, an intact brassinosteroid system is an absolute requirement for cell elongation.

Full Text

The Full Text of this article is available as a PDF (441.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Choe S., Dilkes B. P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K. A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell. 1998 Feb;10(2):231–243. doi: 10.1105/tpc.10.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chory J., Nagpal P., Peto C. A. Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell. 1991 May;3(5):445–459. doi: 10.1105/tpc.3.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chory J., Peto C. A., Ashbaugh M., Saganich R., Pratt L., Ausubel F. Different Roles for Phytochrome in Etiolated and Green Plants Deduced from Characterization of Arabidopsis thaliana Mutants. Plant Cell. 1989 Sep;1(9):867–880. doi: 10.1105/tpc.1.9.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
  5. Chory J., Reinecke D., Sim S., Washburn T., Brenner M. A Role for Cytokinins in De-Etiolation in Arabidopsis (det Mutants Have an Altered Response to Cytokinins). Plant Physiol. 1994 Feb;104(2):339–347. doi: 10.1104/pp.104.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clouse S. D. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J. 1996 Jul;10(1):1–8. doi: 10.1046/j.1365-313x.1996.10010001.x. [DOI] [PubMed] [Google Scholar]
  7. Deng X. W., Caspar T., Quail P. H. cop1: a regulatory locus involved in light-controlled development and gene expression in Arabidopsis. Genes Dev. 1991 Jul;5(7):1172–1182. doi: 10.1101/gad.5.7.1172. [DOI] [PubMed] [Google Scholar]
  8. Deng X. W. Fresh view of light signal transduction in plants. Cell. 1994 Feb 11;76(3):423–426. doi: 10.1016/0092-8674(94)90107-4. [DOI] [PubMed] [Google Scholar]
  9. Feldmann K. A., Marks M. D., Christianson M. L., Quatrano R. S. A Dwarf Mutant of Arabidopsis Generated by T-DNA Insertion Mutagenesis. Science. 1989 Mar 10;243(4896):1351–1354. doi: 10.1126/science.243.4896.1351. [DOI] [PubMed] [Google Scholar]
  10. Hou Y., Von Arnim A. G., Deng X. W. A New Class of Arabidopsis Constitutive Photomorphogenic Genes Involved in Regulating Cotyledon Development. Plant Cell. 1993 Mar;5(3):329–339. doi: 10.1105/tpc.5.3.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li H. M., Altschmied L., Chory J. Arabidopsis mutants define downstream branches in the phototransduction pathway. Genes Dev. 1994 Feb 1;8(3):339–349. doi: 10.1101/gad.8.3.339. [DOI] [PubMed] [Google Scholar]
  12. Li J., Nagpal P., Vitart V., McMorris T. C., Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996 Apr 19;272(5260):398–401. doi: 10.1126/science.272.5260.398. [DOI] [PubMed] [Google Scholar]
  13. Mitchell J. W., Mandava N., Worley J. F., Plimmer J. R., Smith M. V. Brassins--a new family of plant hormones from rape pollen. Nature. 1970 Mar 14;225(5237):1065–1066. doi: 10.1038/2251065a0. [DOI] [PubMed] [Google Scholar]
  14. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rayle D. L., Cleland R. Control of plant cell enlargement by hydrogen ions. Curr Top Dev Biol. 1977;11:187–214. doi: 10.1016/s0070-2153(08)60746-2. [DOI] [PubMed] [Google Scholar]
  16. Reiter W. D., Chapple C. C., Somerville C. R. Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science. 1993 Aug 20;261(5124):1032–1035. doi: 10.1126/science.261.5124.1032. [DOI] [PubMed] [Google Scholar]
  17. Szekeres M., Németh K., Koncz-Kálmán Z., Mathur J., Kauschmann A., Altmann T., Rédei G. P., Nagy F., Schell J., Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996 Apr 19;85(2):171–182. doi: 10.1016/s0092-8674(00)81094-6. [DOI] [PubMed] [Google Scholar]
  18. Takahashi T., Gasch A., Nishizawa N., Chua N. H. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev. 1995 Jan 1;9(1):97–107. doi: 10.1101/gad.9.1.97. [DOI] [PubMed] [Google Scholar]
  19. Talon M., Koornneef M., Zeevaart J. A. Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7983–7987. doi: 10.1073/pnas.87.20.7983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wei N., Deng X. W. COP9: a new genetic locus involved in light-regulated development and gene expression in arabidopsis. Plant Cell. 1992 Dec;4(12):1507–1518. doi: 10.1105/tpc.4.12.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wei N., Kwok S. F., von Arnim A. G., Lee A., McNellis T. W., Piekos B., Deng X. W. Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell. 1994 May;6(5):629–643. doi: 10.1105/tpc.6.5.629. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES