Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Feb;10(2):197–207. doi: 10.1105/tpc.10.2.197

Chimeric proteins between cry1 and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability.

M Ahmad 1, J A Jarillo 1, A R Cashmore 1
PMCID: PMC143983  PMID: 9490743

Abstract

A blue light (cryptochrome) photoreceptor from Arabidopsis, cry1, has been identified recently and shown to mediate a number of blue light-dependent phenotypes. Similar to phytochrome, the cryptochrome photoreceptors are encoded by a gene family of homologous members with considerable amino acid sequence similarity within the N-terminal chromophore binding domain. The two members of the Arabidopsis cryptochrome gene family (CRY1 and CRY2) overlap in function, but their proteins differ in stability: cry2 is rapidly degraded under light fluences (green, blue, and UV) that activate the photoreceptor, but cry1 is not. Here, we demonstrate by overexpression in transgenic plants of cry1 and cry2 fusion constructs that their domains are functionally interchangeable. Hybrid receptor proteins mediate functions similar to cry1 and include inhibition of hypocotyl elongation and blue light-dependent anthocyanin accumulation; differences in activity appear to be correlated with differing protein stability. Because cry2 accumulates to high levels under low-light intensities, it may have greater significance in wild-type plants under conditions when light is limited.

Full Text

The Full Text of this article is available as a PDF (322.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
  2. Ahmad M., Cashmore A. R. Seeing blue: the discovery of cryptochrome. Plant Mol Biol. 1996 Mar;30(5):851–861. doi: 10.1007/BF00020798. [DOI] [PubMed] [Google Scholar]
  3. Ahmad M., Cashmore A. R. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J. 1997 Mar;11(3):421–427. doi: 10.1046/j.1365-313x.1997.11030421.x. [DOI] [PubMed] [Google Scholar]
  4. Ahmad M., Jarillo J. A., Klimczak L. J., Landry L. G., Peng T., Last R. L., Cashmore A. R. An enzyme similar to animal type II photolyases mediates photoreactivation in Arabidopsis. Plant Cell. 1997 Feb;9(2):199–207. doi: 10.1105/tpc.9.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ahmad M., Lin C., Cashmore A. R. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J. 1995 Nov;8(5):653–658. doi: 10.1046/j.1365-313x.1995.08050653.x. [DOI] [PubMed] [Google Scholar]
  6. Bagnall D. J., King R. W., Hangarter R. P. Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis. Planta. 1996;200(2):278–280. doi: 10.1007/BF00208319. [DOI] [PubMed] [Google Scholar]
  7. Barnes S. A., McGrath R. B., Chua N. H. Light signal transduction in plants. Trends Cell Biol. 1997 Jan;7(1):21–26. doi: 10.1016/S0962-8924(97)10043-5. [DOI] [PubMed] [Google Scholar]
  8. Batschauer A. A plant gene for photolyase: an enzyme catalyzing the repair of UV-light-induced DNA damage. Plant J. 1993 Oct;4(4):705–709. doi: 10.1046/j.1365-313x.1993.04040705.x. [DOI] [PubMed] [Google Scholar]
  9. Callis J. Regulation of Protein Degradation. Plant Cell. 1995 Jul;7(7):845–857. doi: 10.1105/tpc.7.7.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chory J., Chatterjee M., Cook R. K., Elich T., Fankhauser C., Li J., Nagpal P., Neff M., Pepper A., Poole D. From seed germination to flowering, light controls plant development via the pigment phytochrome. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12066–12071. doi: 10.1073/pnas.93.22.12066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffman P. D., Batschauer A., Hays J. B. PHH1, a novel gene from Arabidopsis thaliana that encodes a protein similar to plant blue-light photoreceptors and microbial photolyases. Mol Gen Genet. 1996 Nov 27;253(1-2):259–265. doi: 10.1007/s004380050321. [DOI] [PubMed] [Google Scholar]
  12. Jackson J. A., Jenkins G. I. Extension-growth responses and expression of flavonoid biosynthesis genes in the Arabidopsis hy4 mutant. Planta. 1995;197(2):233–239. doi: 10.1007/BF00202642. [DOI] [PubMed] [Google Scholar]
  13. Lam E., Green P. J., Wong M., Chua N. H. Phytochrome activation of two nuclear genes requires cytoplasmic protein synthesis. EMBO J. 1989 Oct;8(10):2777–2783. doi: 10.1002/j.1460-2075.1989.tb08423.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lin C., Ahmad M., Cashmore A. R. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development. Plant J. 1996 Nov;10(5):893–902. doi: 10.1046/j.1365-313x.1996.10050893.x. [DOI] [PubMed] [Google Scholar]
  15. Lin C., Ahmad M., Gordon D., Cashmore A. R. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8423–8427. doi: 10.1073/pnas.92.18.8423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lin C., Robertson D. E., Ahmad M., Raibekas A. A., Jorns M. S., Dutton P. L., Cashmore A. R. Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science. 1995 Aug 18;269(5226):968–970. doi: 10.1126/science.7638620. [DOI] [PubMed] [Google Scholar]
  17. Malhotra K., Kim S. T., Batschauer A., Dawut L., Sancar A. Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity. Biochemistry. 1995 May 23;34(20):6892–6899. doi: 10.1021/bi00020a037. [DOI] [PubMed] [Google Scholar]
  18. McNellis T. W., Deng X. W. Light control of seedling morphogenetic pattern. Plant Cell. 1995 Nov;7(11):1749–1761. doi: 10.1105/tpc.7.11.1749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pruitt R. E., Meyerowitz E. M. Characterization of the genome of Arabidopsis thaliana. J Mol Biol. 1986 Jan 20;187(2):169–183. doi: 10.1016/0022-2836(86)90226-3. [DOI] [PubMed] [Google Scholar]
  20. Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
  21. Quail P. H. Photosensory perception and signal transduction in plants. Curr Opin Genet Dev. 1994 Oct;4(5):652–661. doi: 10.1016/0959-437x(94)90131-l. [DOI] [PubMed] [Google Scholar]
  22. Quail P. H. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet. 1991;25:389–409. doi: 10.1146/annurev.ge.25.120191.002133. [DOI] [PubMed] [Google Scholar]
  23. Reed J. W., Nagatani A., Elich T. D., Fagan M., Chory J. Phytochrome A and Phytochrome B Have Overlapping but Distinct Functions in Arabidopsis Development. Plant Physiol. 1994 Apr;104(4):1139–1149. doi: 10.1104/pp.104.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schardl C. L., Byrd A. D., Benzion G., Altschuler M. A., Hildebrand D. F., Hunt A. G. Design and construction of a versatile system for the expression of foreign genes in plants. Gene. 1987;61(1):1–11. doi: 10.1016/0378-1119(87)90359-3. [DOI] [PubMed] [Google Scholar]
  25. Shanklin J., Jabben M., Vierstra R. D. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation. Proc Natl Acad Sci U S A. 1987 Jan;84(2):359–363. doi: 10.1073/pnas.84.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Somers D. E., Quail P. H. Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis. Plant J. 1995 Mar;7(3):413–427. doi: 10.1046/j.1365-313x.1995.7030413.x. [DOI] [PubMed] [Google Scholar]
  27. Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. The electronic Plant Gene Register. Plant Physiol. 1996 Mar;110(3):1047–1048. doi: 10.1104/pp.110.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vierstra R. D. Illuminating Phytochrome Functions (There Is Light at the End of the Tunnel). Plant Physiol. 1993 Nov;103(3):679–684. doi: 10.1104/pp.103.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vierstra R. D. Proteolysis in plants: mechanisms and functions. Plant Mol Biol. 1996 Oct;32(1-2):275–302. doi: 10.1007/BF00039386. [DOI] [PubMed] [Google Scholar]
  31. Von Arnim Albrecht, Deng Xing-Wang. LIGHT CONTROL OF SEEDLING DEVELOPMENT. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):215–243. doi: 10.1146/annurev.arplant.47.1.215. [DOI] [PubMed] [Google Scholar]
  32. Wagner D., Fairchild C. D., Kuhn R. M., Quail P. H. Chromophore-bearing NH2-terminal domains of phytochromes A and B determine their photosensory specificity and differential light lability. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4011–4015. doi: 10.1073/pnas.93.9.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES