Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Feb;10(2):183–195. doi: 10.1105/tpc.10.2.183

2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid beta-oxidation.

M Hayashi 1, K Toriyama 1, M Kondo 1, M Nishimura 1
PMCID: PMC143991  PMID: 9490742

Abstract

It has been demonstrated previously that 2,4-dichlorophenoxybutyric acid (2,4-DB) is metabolized to produce a herbicide, 2,4-D, by the action of peroxisomal fatty acid beta-oxidation in higher plants. To isolate mutants that have defects in peroxisomal fatty acid beta-oxidation, we screened mutant lines of Arabidopsis seedlings for growth in the presence of toxic levels of 2,4-DB. Twelve of the mutants survived; of these, four required sucrose for postgerminative growth. This result suggests that these mutants have defects in peroxisomal fatty acid beta-oxidation, because peroxisomal fatty acid beta-oxidation plays an important role in producing sucrose from storage lipids during germination. Genetic analysis revealed that these mutants can be classified as carrying alleles at three independent loci, which we designated ped1, ped2, and ped3, respectively (where ped stands for peroxisome defective). The ped1 mutant lacks the thiolase protein, an enzyme involved in fatty acid beta-oxidation during germination and subsequent seedling growth, whereas the ped2 mutant has a defect in the intracellular transport of thiolase from the cytosol to glyoxysomes. Etiolated cotyledons of both ped1 and ped2 mutants have glyoxysomes with abnormal morphology.

Full Text

The Full Text of this article is available as a PDF (506.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini M., Rehling P., Erdmann R., Girzalsky W., Kiel J. A., Veenhuis M., Kunau W. H. Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell. 1997 Apr 4;89(1):83–92. doi: 10.1016/s0092-8674(00)80185-3. [DOI] [PubMed] [Google Scholar]
  2. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  3. Distel B., Erdmann R., Gould S. J., Blobel G., Crane D. I., Cregg J. M., Dodt G., Fujiki Y., Goodman J. M., Just W. W. A unified nomenclature for peroxisome biogenesis factors. J Cell Biol. 1996 Oct;135(1):1–3. doi: 10.1083/jcb.135.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Erdmann R., Blobel G. Identification of Pex13p a peroxisomal membrane receptor for the PTS1 recognition factor. J Cell Biol. 1996 Oct;135(1):111–121. doi: 10.1083/jcb.135.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gietl C. Glyoxysomal malate dehydrogenase from watermelon is synthesized with an amino-terminal transit peptide. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5773–5777. doi: 10.1073/pnas.87.15.5773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hayashi M., Aoki M., Kato A., Kondo M., Nishimura M. Transport of chimeric proteins that contain a carboxy-terminal targeting signal into plant microbodies. Plant J. 1996 Aug;10(2):225–234. doi: 10.1046/j.1365-313x.1996.10020225.x. [DOI] [PubMed] [Google Scholar]
  7. Hayashi M., Aoki M., Kondo M., Nishimura M. Changes in targeting efficiencies of proteins to plant microbodies caused by amino acid substitutions in the carboxy-terminal tripeptide. Plant Cell Physiol. 1997 Jun;38(6):759–768. doi: 10.1093/oxfordjournals.pcp.a029233. [DOI] [PubMed] [Google Scholar]
  8. Kato A., Hayashi M., Kondo M., Nishimura M. Targeting and processing of a chimeric protein with the N-terminal presequence of the precursor to glyoxysomal citrate synthase. Plant Cell. 1996 Sep;8(9):1601–1611. doi: 10.1105/tpc.8.9.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kato A., Hayashi M., Mori H., Nishimura M. Molecular characterization of a glyoxysomal citrate synthase that is synthesized as a precursor of higher molecular mass in pumpkin. Plant Mol Biol. 1995 Jan;27(2):377–390. doi: 10.1007/BF00020191. [DOI] [PubMed] [Google Scholar]
  10. Kato A., Hayashi M., Takeuchi Y., Nishimura M. cDNA cloning and expression of a gene for 3-ketoacyl-CoA thiolase in pumpkin cotyledons. Plant Mol Biol. 1996 Jul;31(4):843–852. doi: 10.1007/BF00019471. [DOI] [PubMed] [Google Scholar]
  11. Kindl H. Fatty acid degradation in plant peroxisomes: function and biosynthesis of the enzymes involved. Biochimie. 1993;75(3-4):225–230. doi: 10.1016/0300-9084(93)90080-c. [DOI] [PubMed] [Google Scholar]
  12. Komori M., Rasmussen S. W., Kiel J. A., Baerends R. J., Cregg J. M., van der Klei I. J., Veenhuis M. The Hansenula polymorpha PEX14 gene encodes a novel peroxisomal membrane protein essential for peroxisome biogenesis. EMBO J. 1997 Jan 2;16(1):44–53. doi: 10.1093/emboj/16.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  14. Marchuk D., Drumm M., Saulino A., Collins F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 1991 Mar 11;19(5):1154–1154. doi: 10.1093/nar/19.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marzioch M., Erdmann R., Veenhuis M., Kunau W. H. PAS7 encodes a novel yeast member of the WD-40 protein family essential for import of 3-oxoacyl-CoA thiolase, a PTS2-containing protein, into peroxisomes. EMBO J. 1994 Oct 17;13(20):4908–4918. doi: 10.1002/j.1460-2075.1994.tb06818.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McNew J. A., Goodman J. M. The targeting and assembly of peroxisomal proteins: some old rules do not apply. Trends Biochem Sci. 1996 Feb;21(2):54–58. [PubMed] [Google Scholar]
  17. Nishimura M., Hayashi M., Kato A., Yamaguchi K., Mano S. Functional transformation of microbodies in higher plant cells. Cell Struct Funct. 1996 Oct;21(5):387–393. doi: 10.1247/csf.21.387. [DOI] [PubMed] [Google Scholar]
  18. Nishimura M., Yamaguchi J., Mori H., Akazawa T., Yokota S. Immunocytochemical Analysis Shows that Glyoxysomes Are Directly Transformed to Leaf Peroxisomes during Greening of Pumpkin Cotyledons. Plant Physiol. 1986 May;81(1):313–316. doi: 10.1104/pp.81.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Olsen L. J., Ettinger W. F., Damsz B., Matsudaira K., Webb M. A., Harada J. J. Targeting of glyoxysomal proteins to peroxisomes in leaves and roots of a higher plant. Plant Cell. 1993 Aug;5(8):941–952. doi: 10.1105/tpc.5.8.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pickett F. B., Wilson A. K., Estelle M. The aux1 Mutation of Arabidopsis Confers Both Auxin and Ethylene Resistance. Plant Physiol. 1990 Nov;94(3):1462–1466. doi: 10.1104/pp.94.3.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Preisig-Müller R., Gühnemann-Schäfer K., Kindl H. Domains of the tetrafunctional protein acting in glyoxysomal fatty acid beta-oxidation. Demonstration of epimerase and isomerase activities on a peptide lacking hydratase activity. J Biol Chem. 1994 Aug 12;269(32):20475–20481. [PubMed] [Google Scholar]
  22. Preisig-Müller R., Kindl H. Thiolase mRNA translated in vitro yields a peptide with a putative N-terminal presequence. Plant Mol Biol. 1993 Apr;22(1):59–66. doi: 10.1007/BF00038995. [DOI] [PubMed] [Google Scholar]
  23. Subramani S. PEX genes on the rise. Nat Genet. 1997 Apr;15(4):331–333. doi: 10.1038/ng0497-331. [DOI] [PubMed] [Google Scholar]
  24. Titus D. E., Becker W. M. Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J Cell Biol. 1985 Oct;101(4):1288–1299. doi: 10.1083/jcb.101.4.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Volokita M. The carboxy-terminal end of glycolate oxidase directs a foreign protein into tobacco leaf peroxisomes. Plant J. 1991 Nov;1(3):361–366. doi: 10.1046/j.1365-313x.1991.t01-4-00999.x. [DOI] [PubMed] [Google Scholar]
  26. WAIN R. L., WIGHTMAN F. The growth regulating activity of certain omega-substituted alkyl carboxylic acids in relation to their beta-oxidation within the plant. Proc R Soc Lond B Biol Sci. 1954 Sep 27;142(909):525–536. doi: 10.1098/rspb.1954.0041. [DOI] [PubMed] [Google Scholar]
  27. Waterham H. R., Cregg J. M. Peroxisome biogenesis. Bioessays. 1997 Jan;19(1):57–66. doi: 10.1002/bies.950190110. [DOI] [PubMed] [Google Scholar]
  28. Zhang J. W., Lazarow P. B. PEB1 (PAS7) in Saccharomyces cerevisiae encodes a hydrophilic, intra-peroxisomal protein that is a member of the WD repeat family and is essential for the import of thiolase into peroxisomes. J Cell Biol. 1995 Apr;129(1):65–80. doi: 10.1083/jcb.129.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES