Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Mar;10(3):475–484. doi: 10.1105/tpc.10.3.475

Light regulation of Fed-1 mRNA requires an element in the 5' untranslated region and correlates with differential polyribosome association.

L F Dickey 1, M E Petracek 1, T T Nguyen 1, E R Hansen 1, W F Thompson 1
PMCID: PMC143995  PMID: 9501119

Abstract

Light regulation of Fed-1 mRNA abundance in the leaves of green plants is primarily a post-transcriptional process. Previously, we have shown that the Fed-1 mRNA light response requires an open reading frame, indicating that the light regulation of the mRNA depends on its concurrent translation. We now show that light-induced increases in Fed-1 mRNA abundance are associated with increases in polyribosome association that require both a functional AUG and a normal Fed-1 translational start context. We also present evidence that light regulation of Fed-1 mRNA levels requires more than efficient translation per se. Substitution of the efficiently translated tobacco mosaic virus Omega 5' untranslated region resulted in a loss of Fed-1 light regulation. In addition, we identified a CAT T repeat element located near the 5' terminus of the Fed-1 5' untranslated region that is essential for light regulation. We introduced two different mutations in the CAT T repeat element, but only one of these substitutions blocked the normal light effect on polyribosome association, whereas both altered dark-induced Fed-1 mRNA disappearance. The element may thus be important for Fed-1 mRNA stability rather than polyribosome loading. We propose a model in which Fed-1 mRNA is relatively stable when it is associated with polyribosomes in illuminated plants but in darkness is not polyribosome associated and is thus rapidly degraded by a process involving the CAT T repeat element.

Full Text

The Full Text of this article is available as a PDF (206.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. A simple and general method for transferring genes into plants. Science. 1985 Mar 8;227(4691):1229–1231. doi: 10.1126/science.227.4691.1229. [DOI] [PubMed] [Google Scholar]
  2. Abler M. L., Green P. J. Control of mRNA stability in higher plants. Plant Mol Biol. 1996 Oct;32(1-2):63–78. doi: 10.1007/BF00039377. [DOI] [PubMed] [Google Scholar]
  3. Adang M. J., Brody M. S., Cardineau G., Eagan N., Roush R. T., Shewmaker C. K., Jones A., Oakes J. V., McBride K. E. The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol Biol. 1993 Mar;21(6):1131–1145. doi: 10.1007/BF00023609. [DOI] [PubMed] [Google Scholar]
  4. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caponigro G., Muhlrad D., Parker R. A small segment of the MAT alpha 1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol Cell Biol. 1993 Sep;13(9):5141–5148. doi: 10.1128/mcb.13.9.5141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caponigro G., Parker R. mRNA turnover in yeast promoted by the MATalpha1 instability element. Nucleic Acids Res. 1996 Nov 1;24(21):4304–4312. doi: 10.1093/nar/24.21.4304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Caspar T., Quail P. H. Promoter and leader regions involved in the expression of the Arabidopsis ferredoxin A gene. Plant J. 1993 Jan;3(1):161–174. doi: 10.1046/j.1365-313x.1993.t01-8-00999.x. [DOI] [PubMed] [Google Scholar]
  8. Davies E., Abe S. Methods for isolation and analysis of polyribosomes. Methods Cell Biol. 1995;50:209–222. doi: 10.1016/s0091-679x(08)61032-8. [DOI] [PubMed] [Google Scholar]
  9. Dickey L. F., Gallo-Meagher M., Thompson W. F. Light regulatory sequences are located within the 5' portion of the Fed-1 message sequence. EMBO J. 1992 Jun;11(6):2311–2317. doi: 10.1002/j.1460-2075.1992.tb05290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dickey L. F., Nguyen T. T., Allen G. C., Thompson W. F. Light modulation of ferredoxin mRNA abundance requires an open reading frame. Plant Cell. 1994 Aug;6(8):1171–1176. doi: 10.1105/tpc.6.8.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Diehn S. H., De Rocher E. J., Green P. J. Problems that can limit the expression of foreign genes in plants: lessons to be learned from B.t. toxin genes. Genet Eng (N Y) 1996;18:83–99. doi: 10.1007/978-1-4899-1766-9_6. [DOI] [PubMed] [Google Scholar]
  12. Elliott R. C., Dickey L. F., White M. J., Thompson W. F. cis-Acting Elements for Light Regulation of Pea Ferredoxin I Gene Expression Are Located within Transcribed Sequences. Plant Cell. 1989 Jul;1(7):691–698. doi: 10.1105/tpc.1.7.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elliott R. C., Pedersen T. J., Fristensky B., White M. J., Dickey L. F., Thompson W. F. Characterization of a single copy gene encoding ferredoxin I from pea. Plant Cell. 1989 Jul;1(7):681–690. doi: 10.1105/tpc.1.7.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gallie D. R., Lucas W. J., Walbot V. Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell. 1989 Mar;1(3):301–311. doi: 10.1105/tpc.1.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gallie D. R., Sleat D. E., Watts J. W., Turner P. C., Wilson T. M. A comparison of eukaryotic viral 5'-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res. 1987 Nov 11;15(21):8693–8711. doi: 10.1093/nar/15.21.8693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gallie D. R., Walbot V. Identification of the motifs within the tobacco mosaic virus 5'-leader responsible for enhancing translation. Nucleic Acids Res. 1992 Sep 11;20(17):4631–4638. doi: 10.1093/nar/20.17.4631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gallo-Meagher M., Sowinski D. A., Elliott R. C., Thompson W. F. Both internal and external regulatory elements control expression of the pea Fed-1 gene in transgenic tobacco seedlings. Plant Cell. 1992 Apr;4(4):389–395. doi: 10.1105/tpc.4.4.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Helliwell C. A., Gray J. C. The sequence surrounding the translation initiation codon of the pea plastocyanin gene increases translational efficiency of a reporter gene. Plant Mol Biol. 1995 Nov;29(3):621–626. doi: 10.1007/BF00020990. [DOI] [PubMed] [Google Scholar]
  19. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  20. Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem. 1996;65:693–739. doi: 10.1146/annurev.bi.65.070196.003401. [DOI] [PubMed] [Google Scholar]
  21. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kozak M. Features in the 5' non-coding sequences of rabbit alpha and beta-globin mRNAs that affect translational efficiency. J Mol Biol. 1994 Jan 7;235(1):95–110. doi: 10.1016/s0022-2836(05)80019-1. [DOI] [PubMed] [Google Scholar]
  23. Kozak M. Leader length and secondary structure modulate mRNA function under conditions of stress. Mol Cell Biol. 1988 Jul;8(7):2737–2744. doi: 10.1128/mcb.8.7.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Linz B., Koloteva N., Vasilescu S., McCarthy J. E. Disruption of ribosomal scanning on the 5'-untranslated region, and not restriction of translational initiation per se, modulates the stability of nonaberrant mRNAs in the yeast Saccharomyces cerevisiae. J Biol Chem. 1997 Apr 4;272(14):9131–9140. doi: 10.1074/jbc.272.14.9131. [DOI] [PubMed] [Google Scholar]
  25. Marcotte W. R., Jr, Russell S. H., Quatrano R. S. Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell. 1989 Oct;1(10):969–976. doi: 10.1105/tpc.1.10.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Muhlrad D., Decker C. J., Parker R. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol Cell Biol. 1995 Apr;15(4):2145–2156. doi: 10.1128/mcb.15.4.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Parker R., Jacobson A. Translation and a 42-nucleotide segment within the coding region of the mRNA encoded by the MAT alpha 1 gene are involved in promoting rapid mRNA decay in yeast. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2780–2784. doi: 10.1073/pnas.87.7.2780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peltz S. W., Brewer G., Bernstein P., Hart P. A., Ross J. Regulation of mRNA turnover in eukaryotic cells. Crit Rev Eukaryot Gene Expr. 1991;1(2):99–126. [PubMed] [Google Scholar]
  29. Petracek M. E., Dickey L. F., Huber S. C., Thompson W. F. Light-regulated changes in abundance and polyribosome association of ferredoxin mRNA are dependent on photosynthesis. Plant Cell. 1997 Dec;9(12):2291–2300. doi: 10.1105/tpc.9.12.2291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995 Sep;59(3):423–450. doi: 10.1128/mr.59.3.423-450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rouwendal G. J., Mendes O., Wolbert E. J., Douwe de Boer A. Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol. 1997 Apr;33(6):989–999. doi: 10.1023/a:1005740823703. [DOI] [PubMed] [Google Scholar]
  32. Sachs A. B. Messenger RNA degradation in eukaryotes. Cell. 1993 Aug 13;74(3):413–421. doi: 10.1016/0092-8674(93)80043-e. [DOI] [PubMed] [Google Scholar]
  33. Savant-Bhonsale S., Cleveland D. W. Evidence for instability of mRNAs containing AUUUA motifs mediated through translation-dependent assembly of a > 20S degradation complex. Genes Dev. 1992 Oct;6(10):1927–1939. doi: 10.1101/gad.6.10.1927. [DOI] [PubMed] [Google Scholar]
  34. Stewart C. N., Jr, Adang M. J., All J. N., Boerma H. R., Cardineau G., Tucker D., Parrott W. A. Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol. 1996 Sep;112(1):121–129. doi: 10.1104/pp.112.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sullivan M. L., Green P. J. Post-transcriptional regulation of nuclear-encoded genes in higher plants: the roles of mRNA stability and translation. Plant Mol Biol. 1993 Dec;23(6):1091–1104. doi: 10.1007/BF00042344. [DOI] [PubMed] [Google Scholar]
  36. Vega Laso M. R., Zhu D., Sagliocco F., Brown A. J., Tuite M. F., McCarthy J. E. Inhibition of translational initiation in the yeast Saccharomyces cerevisiae as a function of the stability and position of hairpin structures in the mRNA leader. J Biol Chem. 1993 Mar 25;268(9):6453–6462. [PubMed] [Google Scholar]
  37. Wada K., Aota S., Tsuchiya R., Ishibashi F., Gojobori T., Ikemura T. Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res. 1990 Apr 25;18 (Suppl):2367–2411. doi: 10.1093/nar/18.suppl.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. van Hoof A., Green P. J. Rare codons are not sufficient to destabilize a reporter gene transcript in tobacco. Plant Mol Biol. 1997 Oct;35(3):383–387. doi: 10.1023/a:1005849622840. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES