Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Mar;10(3):413–426. doi: 10.1105/tpc.10.3.413

Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos.

J Craig 1, J R Lloyd 1, K Tomlinson 1, L Barber 1, A Edwards 1, T L Wang 1, C Martin 1, C L Hedley 1, A M Smith 1
PMCID: PMC143996  PMID: 9501114

Abstract

Mutations at the rug5 (rugosus5) locus have been used to elucidate the role of the major soluble isoform of starch synthase II (SSII) in amylopectin synthesis in the developing pea embryo. The SSII gene maps to the rug5 locus, and the gene in one of three rug5 mutant lines has been shown to carry a base pair substitution that introduces a stop codon into the open reading frame. All three mutant alleles cause a dramatic reduction or loss of the SSII protein. The mutations have pleiotropic effects on the activities of other isoforms of starch synthase but apparently not on those of other enzymes of starch synthesis. These mutations result in abnormal starch granule morphology and amylopectin structure. Amylopectin contains fewer chains of intermediate length (B2 and B3 chains) and more very short and very long chains than does amylopectin from wild-type embryos. The results suggest that SSII may play a specific role in the synthesis of B2 and B3 chains of amylopectin. The extent to which these findings can be extrapolated to other species is discussed.

Full Text

The Full Text of this article is available as a PDF (284.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel G. J., Springer F., Willmitzer L., Kossmann J. Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.). Plant J. 1996 Dec;10(6):981–991. doi: 10.1046/j.1365-313x.1996.10060981.x. [DOI] [PubMed] [Google Scholar]
  2. Aulakh C. S., Zohar J., Wozniak K. M., Hill J. L., Haass M., Murphy D. L. Differential effects of antidepressant treatments on fenfluramine-induced increases in plasma prolactin and corticosterone in rats. Pharmacol Biochem Behav. 1991 May;39(1):91–95. doi: 10.1016/0091-3057(91)90402-n. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharyya M. K., Smith A. M., Ellis T. H., Hedley C., Martin C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell. 1990 Jan 12;60(1):115–122. doi: 10.1016/0092-8674(90)90721-p. [DOI] [PubMed] [Google Scholar]
  4. Boyer C. D., Preiss J. Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol. 1981 Jun;67(6):1141–1145. doi: 10.1104/pp.67.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burton R. A., Bewley J. D., Smith A. M., Bhattacharyya M. K., Tatge H., Ring S., Bull V., Hamilton W. D., Martin C. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 1995 Jan;7(1):3–15. doi: 10.1046/j.1365-313x.1995.07010003.x. [DOI] [PubMed] [Google Scholar]
  6. Denyer K., Sidebottom C., Hylton C. M., Smith A. M. Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. Plant J. 1993 Jul;4(1):191–198. doi: 10.1046/j.1365-313x.1993.04010191.x. [DOI] [PubMed] [Google Scholar]
  7. Dry I., Smith A., Edwards A., Bhattacharyya M., Dunn P., Martin C. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato. Plant J. 1992 Mar;2(2):193–202. [PubMed] [Google Scholar]
  8. Edwards A., Marshall J., Denyer K., Sidebottom C., Visser R. G., Martin C., Smith A. M. Evidence that a 77-kilodalton protein from the starch of pea embryos is an isoform of starch synthase that is both soluble and granule bound. Plant Physiol. 1996 Sep;112(1):89–97. doi: 10.1104/pp.112.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edwards A., Marshall J., Sidebottom C., Visser R. G., Smith A. M., Martin C. Biochemical and molecular characterization of a novel starch synthase from potato tubers. Plant J. 1995 Aug;8(2):283–294. doi: 10.1046/j.1365-313x.1995.08020283.x. [DOI] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Fontaine T., D'Hulst C., Maddelein M. L., Routier F., Pépin T. M., Decq A., Wieruszeski J. M., Delrue B., Van den Koornhuyse N., Bossu J. P. Toward an understanding of the biogenesis of the starch granule. Evidence that Chlamydomonas soluble starch synthase II controls the synthesis of intermediate size glucans of amylopectin. J Biol Chem. 1993 Aug 5;268(22):16223–16230. [PubMed] [Google Scholar]
  12. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hylton C., Smith A. M. The rb Mutation of Peas Causes Structural and Regulatory Changes in ADP Glucose Pyrophosphorylase from Developing Embryos. Plant Physiol. 1992 Aug;99(4):1626–1634. doi: 10.1104/pp.99.4.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marshall J., Sidebottom C., Debet M., Martin C., Smith A. M., Edwards A. Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell. 1996 Jul;8(7):1121–1135. doi: 10.1105/tpc.8.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Martin C., Smith A. M. Starch biosynthesis. Plant Cell. 1995 Jul;7(7):971–985. doi: 10.1105/tpc.7.7.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pienkowska M., Glickman B. W., Ferreira A., Anderson M., Zielenska M. Large-scale mutational analysis of EMS-induced mutation in the lacI gene of Escherichia coli. Mutat Res. 1993 Jul;288(1):123–131. doi: 10.1016/0027-5107(93)90214-z. [DOI] [PubMed] [Google Scholar]
  17. Singletary G. W., Banisadr R., Keeling P. L. Influence of Gene Dosage on Carbohydrate Synthesis and Enzymatic Activities in Endosperm of Starch-Deficient Mutants of Maize. Plant Physiol. 1997 Jan;113(1):293–304. doi: 10.1104/pp.113.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith A. M., Bettey M., Bedford I. D. Evidence that the rb Locus Alters the Starch Content of Developing Pea Embryos through an Effect on ADP Glucose Pyrophosphorylase. Plant Physiol. 1989 Apr;89(4):1279–1284. doi: 10.1104/pp.89.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith A. M., Denyer K., Martin C. THE SYNTHESIS OF THE STARCH GRANULE. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):67–87. doi: 10.1146/annurev.arplant.48.1.67. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES