Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Mar;10(3):399–412. doi: 10.1105/tpc.10.3.399

Characterization of dull1, a maize gene coding for a novel starch synthase.

M Gao 1, J Wanat 1, P S Stinard 1, M G James 1, A M Myers 1
PMCID: PMC143999  PMID: 9501113

Abstract

The maize dull1 (du1) gene is a determinant of the structure of endosperm starch, and du1- mutations affect the activity of two enzymes involved in starch biosynthesis, starch synthase II (SSII) and starch branching enzyme IIa (SBEIIa). Six novel du1- mutations generated in Mutator-active plants were identified. A portion of the du1 locus was cloned by transposon tagging, and a nearly full-length Du1 cDNA sequence was determined. Du1 codes for a predicted 1674-residue protein, comprising one portion that is similar to SSIII of potato, as well as a large unique region. Du1 transcripts are present in the endosperm during the time of starch biosynthesis, but the mRNA was undetectable in leaf or root tissue. The predicted size of the Du1 gene product and its expression pattern are consistent with those of maize SSII. The Du1 gene product contains two repeated regions in its unique N terminus. One of these contains a sequence identical to a conserved segment of SBEs. We conclude that Du1 codes for a starch synthase, most likely SSII, and that secondary effects of du1- mutations, such as reduction of SBEIIa, result from the primary deficiency in this starch synthase.

Full Text

The Full Text of this article is available as a PDF (336.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel G. J., Springer F., Willmitzer L., Kossmann J. Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.). Plant J. 1996 Dec;10(6):981–991. doi: 10.1046/j.1365-313x.1996.10060981.x. [DOI] [PubMed] [Google Scholar]
  2. Ball S., Guan H. P., James M., Myers A., Keeling P., Mouille G., Buléon A., Colonna P., Preiss J. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell. 1996 Aug 9;86(3):349–352. doi: 10.1016/s0092-8674(00)80107-5. [DOI] [PubMed] [Google Scholar]
  3. Barker R. F., Thompson D. V., Talbot D. R., Swanson J., Bennetzen J. L. Nucleotide sequence of the maize transposable element Mul. Nucleic Acids Res. 1984 Aug 10;12(15):5955–5967. doi: 10.1093/nar/12.15.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhave M. R., Lawrence S., Barton C., Hannah L. C. Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell. 1990 Jun;2(6):581–588. doi: 10.1105/tpc.2.6.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boyer C. D., Preiss J. Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol. 1981 Jun;67(6):1141–1145. doi: 10.1104/pp.67.6.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buléon A., Gallant D. J., Bouchet B., Mouille G., D'Hulst C., Kossmann J., Ball S. Starches from A to C. Chlamydomonas reinhardtii as a model microbial system to investigate the biosynthesis of the plant amylopectin crystal. Plant Physiol. 1997 Nov;115(3):949–957. doi: 10.1104/pp.115.3.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Creech R G. Genetic Control of Carbohydrate Synthesis in Maize Endosperm. Genetics. 1965 Dec;52(6):1175–1186. doi: 10.1093/genetics/52.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fisher D. K., Boyer C. D., Hannah L. C. Starch branching enzyme II from maize endosperm. Plant Physiol. 1993 Jul;102(3):1045–1046. doi: 10.1104/pp.102.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fisher D. K., Gao M., Kim K. N., Boyer C. D., Guiltinan M. J. Allelic Analysis of the Maize amylose-extender Locus Suggests That Independent Genes Encode Starch-Branching Enzymes IIa and IIb. Plant Physiol. 1996 Feb;110(2):611–619. doi: 10.1104/pp.110.2.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fisher D. K., Kim K. N., Gao M., Boyer C. D., Guiltinan M. J. A cDNA encoding starch branching enzyme I from maize endosperm. Plant Physiol. 1995 Jul;108(3):1313–1314. doi: 10.1104/pp.108.3.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fontaine T., D'Hulst C., Maddelein M. L., Routier F., Pépin T. M., Decq A., Wieruszeski J. M., Delrue B., Van den Koornhuyse N., Bossu J. P. Toward an understanding of the biogenesis of the starch granule. Evidence that Chlamydomonas soluble starch synthase II controls the synthesis of intermediate size glucans of amylopectin. J Biol Chem. 1993 Aug 5;268(22):16223–16230. [PubMed] [Google Scholar]
  13. Gao M., Fisher D. K., Kim K. N., Shannon J. C., Guiltinan M. J. Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggests isoform specialization. Plant Mol Biol. 1996 Mar;30(6):1223–1232. doi: 10.1007/BF00019554. [DOI] [PubMed] [Google Scholar]
  14. Gao M., Fisher D. K., Kim K. N., Shannon J. C., Guiltinan M. J. Independent genetic control of maize starch-branching enzymes IIa and IIb. Isolation and characterization of a Sbe2a cDNA. Plant Physiol. 1997 May;114(1):69–78. doi: 10.1104/pp.114.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Giroux M. J., Boyer C., Feix G., Hannah L. C. Coordinated Transcriptional Regulation of Storage Product Genes in the Maize Endosperm. Plant Physiol. 1994 Oct;106(2):713–722. doi: 10.1104/pp.106.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. James M. G., Robertson D. S., Myers A. M. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell. 1995 Apr;7(4):417–429. doi: 10.1105/tpc.7.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jespersen H. M., MacGregor E. A., Henrissat B., Sierks M. R., Svensson B. Starch- and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (beta/alpha)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J Protein Chem. 1993 Dec;12(6):791–805. doi: 10.1007/BF01024938. [DOI] [PubMed] [Google Scholar]
  18. Kuriki T., Guan H., Sivak M., Preiss J. Analysis of the active center of branching enzyme II from maize endosperm. J Protein Chem. 1996 Apr;15(3):305–313. doi: 10.1007/BF01887119. [DOI] [PubMed] [Google Scholar]
  19. Mangelsdorf P. C. The Inheritance of Amylaceous Sugary Endosperm and Its Derivatives in Maize. Genetics. 1947 Sep;32(5):448–458. doi: 10.1093/genetics/32.5.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marshall J., Sidebottom C., Debet M., Martin C., Smith A. M., Edwards A. Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell. 1996 Jul;8(7):1121–1135. doi: 10.1105/tpc.8.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin C., Smith A. M. Starch biosynthesis. Plant Cell. 1995 Jul;7(7):971–985. doi: 10.1105/tpc.7.7.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ozbun J. L., Hawker J. S., Preiss J. Adenosine diphosphoglucose-starch glucosyltransferases from developing kernels of waxy maize. Plant Physiol. 1971 Dec;48(6):765–769. doi: 10.1104/pp.48.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shannon J. C., Pien F. M., Liu K. C. Nucleotides and Nucleotide Sugars in Developing Maize Endosperms (Synthesis of ADP-Glucose in brittle-1). Plant Physiol. 1996 Mar;110(3):835–843. doi: 10.1104/pp.110.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shure M., Wessler S., Fedoroff N. Molecular identification and isolation of the Waxy locus in maize. Cell. 1983 Nov;35(1):225–233. doi: 10.1016/0092-8674(83)90225-8. [DOI] [PubMed] [Google Scholar]
  25. Singletary G. W., Banisadr R., Keeling P. L. Influence of Gene Dosage on Carbohydrate Synthesis and Enzymatic Activities in Endosperm of Starch-Deficient Mutants of Maize. Plant Physiol. 1997 Jan;113(1):293–304. doi: 10.1104/pp.113.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith A. M., Denyer K., Martin C. THE SYNTHESIS OF THE STARCH GRANULE. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):67–87. doi: 10.1146/annurev.arplant.48.1.67. [DOI] [PubMed] [Google Scholar]
  27. Stinard P. S., Robertson D. S., Schnable P. S. Genetic Isolation, Cloning, and Analysis of a Mutator-Induced, Dominant Antimorph of the Maize amylose extender1 Locus. Plant Cell. 1993 Nov;5(11):1555–1566. doi: 10.1105/tpc.5.11.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sullivan T. D., Strelow L. I., Illingworth C. A., Phillips R. L., Nelson O. E., Jr Analysis of maize brittle-1 alleles and a defective Suppressor-mutator-induced mutable allele. Plant Cell. 1991 Dec;3(12):1337–1348. doi: 10.1105/tpc.3.12.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES