Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Mar;10(3):343–357. doi: 10.1105/tpc.10.3.343

The role of proteolysis in the processing and assembly of 11S seed globulins.

R Jung 1, M P Scott 1, Y W Nam 1, T W Beaman 1, R Bassüner 1, I Saalbach 1, K Müntz 1, N C Nielsen 1
PMCID: PMC144002  PMID: 9501109

Abstract

11S seed storage proteins are synthesized as precursors that are cleaved post-translationally in storage vacuoles by an asparaginyl endopeptidase. To study the specificity of the reaction catalyzed by this asparaginyl endopeptidase, we prepared a series of octapeptides and mutant legumin B and G4 glycinin subunits. These contained amino acid mutations in the region surrounding the cleavage site. The endopeptidase had an absolute specificity for Asn on the N-terminal side of the severed peptide bond but exhibited little specificity for amino acids on the C-terminal side. The ability of unmodified and modified subunits to assemble into hexamers after post-translational modification was evaluated. Cleavage of subunits in trimers is required for hexamer assembly in vitro. Products from a mutant gene encoding a noncleavable prolegumin subunit (LeBDeltaN281) accumulated as trimers in seed of transgenic tobacco, but products from the unmodified prolegumin B gene accumulated as hexamers. Therefore, the asparaginyl endopeptidase is required for hexamer assembly.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Shirane K., Yokosawa H., Matsushita H., Mitta M., Kato I., Ishii S. Asparaginyl endopeptidase of jack bean seeds. Purification, characterization, and high utility in protein sequence analysis. J Biol Chem. 1993 Feb 15;268(5):3525–3529. [PubMed] [Google Scholar]
  2. Altenbach S. B., Kuo C. C., Staraci L. C., Pearson K. W., Wainwright C., Georgescu A., Townsend J. Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol Biol. 1992 Jan;18(2):235–245. doi: 10.1007/BF00034952. [DOI] [PubMed] [Google Scholar]
  3. Altenbach S. B., Pearson K. W., Meeker G., Staraci L. C., Sun S. M. Enhancement of the methionine content of seed proteins by the expression of a chimeric gene encoding a methionine-rich protein in transgenic plants. Plant Mol Biol. 1989 Nov;13(5):513–522. doi: 10.1007/BF00027311. [DOI] [PubMed] [Google Scholar]
  4. Arahira M., Fukazawa C. Ginkgo 11S seed storage protein family mRNA: unusual Asn-Asn linkage as post-translational cleavage site. Plant Mol Biol. 1994 Jul;25(4):597–605. doi: 10.1007/BF00029599. [DOI] [PubMed] [Google Scholar]
  5. Argos P., Narayana S. V., Nielsen N. C. Structural similarity between legumin and vicilin storage proteins from legumes. EMBO J. 1985 May;4(5):1111–1117. doi: 10.1002/j.1460-2075.1985.tb03747.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barton K. A., Thompson J. F., Madison J. T., Rosenthal R., Jarvis N. P., Beachy R. N. The biosynthesis and processing of high molecular weight precursors of soybean glycinin subunits. J Biol Chem. 1982 Jun 10;257(11):6089–6095. [PubMed] [Google Scholar]
  7. Becker C., Shutov A. D., Nong V. H., Senyuk V. I., Jung R., Horstmann C., Fischer J., Nielsen N. C., Müntz K. Purification, cDNA cloning and characterization of proteinase B, an asparagine-specific endopeptidase from germinating vetch (Vicia sativa L.) seeds. Eur J Biochem. 1995 Mar 1;228(2):456–462. [PubMed] [Google Scholar]
  8. Chrispeels M. J., Higgins T. J., Spencer D. Assembly of storage protein oligomers in the endoplasmic reticulum and processing of the polypeptides in the protein bodies of developing pea cotyledons. J Cell Biol. 1982 May;93(2):306–313. doi: 10.1083/jcb.93.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dickinson C. D., Floener L. A., Lilley G. G., Nielsen N. C. Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from cDNA. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5525–5529. doi: 10.1073/pnas.84.16.5525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dickinson C. D., Hussein E. H., Nielsen N. C. Role of posttranslational cleavage in glycinin assembly. Plant Cell. 1989 Apr;1(4):459–469. doi: 10.1105/tpc.1.4.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dickinson C. D., Scott M. P., Hussein E. H., Argos P., Nielsen N. C. Effect of structural modifications on the assembly of a glycinin subunit. Plant Cell. 1990 May;2(5):403–413. doi: 10.1105/tpc.2.5.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hara-Nishimura I., Inoue K., Nishimura M. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett. 1991 Dec 2;294(1-2):89–93. doi: 10.1016/0014-5793(91)81349-d. [DOI] [PubMed] [Google Scholar]
  13. Ishii S. Legumain: asparaginyl endopeptidase. Methods Enzymol. 1994;244:604–615. doi: 10.1016/0076-6879(94)44044-1. [DOI] [PubMed] [Google Scholar]
  14. Jung R., Nam Y. W., Saalbach I., Müntz K., Nielsen N. C. Role of the sulfhydryl redox state and disulfide bonds in processing and assembly of 11S seed globulins. Plant Cell. 1997 Nov;9(11):2037–2050. doi: 10.1105/tpc.9.11.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jung R., Scott M. P., Oliveira L. O., Nielsen N. C. A simple and efficient method for the oligodeoxyribonucleotide-directed mutagenesis of double-stranded plasmid DNA. Gene. 1992 Nov 2;121(1):17–24. doi: 10.1016/0378-1119(92)90157-k. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lawrence M. C., Izard T., Beuchat M., Blagrove R. J., Colman P. M. Structure of phaseolin at 2.2 A resolution. Implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. J Mol Biol. 1994 May 20;238(5):748–776. doi: 10.1006/jmbi.1994.1333. [DOI] [PubMed] [Google Scholar]
  18. Leal I., Misra S. Molecular cloning and characterization of a legumin-like storage protein cDNA of Douglas fir seeds. Plant Mol Biol. 1993 Feb;21(4):709–715. doi: 10.1007/BF00014555. [DOI] [PubMed] [Google Scholar]
  19. March J. F., Pappin D. J., Casey R. Isolation and characterization of a minor legumin and its constituent polypeptides from Pisum sativum (pea). Biochem J. 1988 Mar 15;250(3):911–915. doi: 10.1042/bj2500911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Molvig L., Tabe L. M., Eggum B. O., Moore A. E., Craig S., Spencer D., Higgins T. J. Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8393–8398. doi: 10.1073/pnas.94.16.8393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Muramatsu M., Fukazawa C. A high-order structure of plant storage proprotein allows its second conversion by an asparagine-specific cysteine protease, a novel proteolytic enzyme. Eur J Biochem. 1993 Jul 1;215(1):123–132. doi: 10.1111/j.1432-1033.1993.tb18014.x. [DOI] [PubMed] [Google Scholar]
  22. Nam Y. W., Jung R., Nielsen N. C. Adenosine 5'-triphosphate is required for the assembly of 11S seed proglobulins in vitro. Plant Physiol. 1997 Dec;115(4):1629–1639. doi: 10.1104/pp.115.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nielsen N. C., Dickinson C. D., Cho T. J., Thanh V. H., Scallon B. J., Fischer R. L., Sims T. L., Drews G. N., Goldberg R. B. Characterization of the glycinin gene family in soybean. Plant Cell. 1989 Mar;1(3):313–328. doi: 10.1105/tpc.1.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saalbach G., Jung R., Kunze G., Saalbach I., Adler K., Müntz K. Different legumin protein domains act as vacuolar targeting signals. Plant Cell. 1991 Jul;3(7):695–708. doi: 10.1105/tpc.3.7.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  27. Scott M. P., Jung R., Muntz K., Nielsen N. C. A protease responsible for post-translational cleavage of a conserved Asn-Gly linkage in glycinin, the major seed storage protein of soybean. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):658–662. doi: 10.1073/pnas.89.2.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Staswick P. E., Hermodson M. A., Nielsen N. C. Identification of the cystines which link the acidic and basic components of the glycinin subunits. J Biol Chem. 1984 Nov 10;259(21):13431–13435. [PubMed] [Google Scholar]
  29. Staswick P. E., Nielsen N. C. Characterization of a soybean cultivar lacking certain glycinin subunits. Arch Biochem Biophys. 1983 May;223(1):1–8. doi: 10.1016/0003-9861(83)90565-9. [DOI] [PubMed] [Google Scholar]
  30. Sturm A., Johnson K. D., Szumilo T., Elbein A. D., Chrispeels M. J. Subcellular localization of glycosidases and glycosyltransferases involved in the processing of N-linked oligosaccharides. Plant Physiol. 1987 Nov;85(3):741–745. doi: 10.1104/pp.85.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES