Abstract
As a means to eliminate pathogen-infected cells and prevent diseases, programmed cell death (PCD) appears to be a defense strategy employed by most multicellular organisms. Recent studies have indicated that reactive oxygen species, such as O2.- and H2O2, play a central role in the activation and propagation of pathogen-induced PCD in plants. However, plants contain several mechanisms that detoxify O2.- and H2O2 and may inhibit PCD. We found that during viral-induced PCD in tobacco, the expression of cytosolic ascorbate peroxidase (cAPX), a key H2O2 detoxifying enzyme, is post-transcriptionally suppressed. Thus, although the steady state level of transcripts encoding cAPX was induced during PCD, as expected under conditions of elevated H2O2, the level of the cAPX protein declined. In vivo protein labeling, followed by immunoprecipitation, indicated that the synthesis of the cAPX protein was inhibited. Although transcripts encoding cAPX were found to associate with polysomes during PCD, no cAPX protein was detected after in vitro polysome run-off assays. Our findings suggest that viral-induced PCD in tobacco is accompanied by the suppression of cAPX expression, possibly at the level of translation elongation. This suppression is likely to contribute to a reduction in the capability of cells to scavenge H2O2, which in turn enables the accumulation of H2O2 and the acceleration of PCD.
Full Text
The Full Text of this article is available as a PDF (462.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bestwick C. S., Brown I. R., Bennett M. H., Mansfield J. W. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell. 1997 Feb;9(2):209–221. doi: 10.1105/tpc.9.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bi Y. M., Kenton P., Mur L., Darby R., Draper J. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 1995 Aug;8(2):235–245. doi: 10.1046/j.1365-313x.1995.08020235.x. [DOI] [PubMed] [Google Scholar]
- Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
- Constabel C. P., Bergey D. R., Ryan C. A. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):407–411. doi: 10.1073/pnas.92.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crosby J. S., Vayda M. E. Stress-Induced Translational Control in Potato Tubers May Be Mediated by Polysome-Associated Proteins. Plant Cell. 1991 Sep;3(9):1013–1023. doi: 10.1105/tpc.3.9.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dangl J. L., Dietrich R. A., Richberg M. H. Death Don't Have No Mercy: Cell Death Programs in Plant-Microbe Interactions. Plant Cell. 1996 Oct;8(10):1793–1807. doi: 10.1105/tpc.8.10.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durner J., Klessig D. F. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11312–11316. doi: 10.1073/pnas.92.24.11312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fodor J., Gullner G., Adam A. L., Barna B., Komives T., Kiraly Z. Local and Systemic Responses of Antioxidants to Tobacco Mosaic Virus Infection and to Salicylic Acid in Tobacco (Role in Systemic Acquired Resistance). Plant Physiol. 1997 Aug;114(4):1443–1451. doi: 10.1104/pp.114.4.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraser A., Evan G. A license to kill. Cell. 1996 Jun 14;85(6):781–784. doi: 10.1016/s0092-8674(00)81005-3. [DOI] [PubMed] [Google Scholar]
- Gallie D. R. Translational control of cellular and viral mRNAs. Plant Mol Biol. 1996 Oct;32(1-2):145–158. doi: 10.1007/BF00039381. [DOI] [PubMed] [Google Scholar]
- Glazener J. A., Orlandi E. W., Baker C. J. The Active Oxygen Response of Cell Suspensions to Incompatible Bacteria Is Not Sufficient to Cause Hypersensitive Cell Death. Plant Physiol. 1996 Mar;110(3):759–763. doi: 10.1104/pp.110.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green R., Fluhr R. UV-B-Induced PR-1 Accumulation Is Mediated by Active Oxygen Species. Plant Cell. 1995 Feb;7(2):203–212. doi: 10.1105/tpc.7.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenberg J. T. Programmed cell death: a way of life for plants. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12094–12097. doi: 10.1073/pnas.93.22.12094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haecker G., Vaux D. L. Viral, worm and radical implications for apoptosis. Trends Biochem Sci. 1994 Mar;19(3):99–100. doi: 10.1016/0968-0004(94)90197-x. [DOI] [PubMed] [Google Scholar]
- Hammond-Kosack K. E., Jones J. D. Resistance gene-dependent plant defense responses. Plant Cell. 1996 Oct;8(10):1773–1791. doi: 10.1105/tpc.8.10.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jabs T., Dietrich R. A., Dangl J. L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science. 1996 Sep 27;273(5283):1853–1856. doi: 10.1126/science.273.5283.1853. [DOI] [PubMed] [Google Scholar]
- Jacobson M. D., Raff M. C. Programmed cell death and Bcl-2 protection in very low oxygen. Nature. 1995 Apr 27;374(6525):814–816. doi: 10.1038/374814a0. [DOI] [PubMed] [Google Scholar]
- Jimenez A., Hernandez J. A., Del Rio L. A., Sevilla F. Evidence for the Presence of the Ascorbate-Glutathione Cycle in Mitochondria and Peroxisomes of Pea Leaves. Plant Physiol. 1997 May;114(1):275–284. doi: 10.1104/pp.114.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpinski S., Escobar C., Karpinska B., Creissen G., Mullineaux P. M. Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell. 1997 Apr;9(4):627–640. doi: 10.1105/tpc.9.4.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kauss H., Jeblick W., Ziegler J., Krabler W. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species. Plant Physiol. 1994 May;105(1):89–94. doi: 10.1104/pp.105.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komar A. A., Kommer A., Krasheninnikov I. A., Spirin A. S. Cotranslational folding of globin. J Biol Chem. 1997 Apr 18;272(16):10646–10651. doi: 10.1074/jbc.272.16.10646. [DOI] [PubMed] [Google Scholar]
- Kubo A., Saji H., Tanaka K., Kondo N. Expression of Arabidopsis cytosolic ascorbate peroxidase gene in response to ozone or sulfur dioxide. Plant Mol Biol. 1995 Nov;29(3):479–489. doi: 10.1007/BF00020979. [DOI] [PubMed] [Google Scholar]
- Kvaratskhelia M., George S. J., Thorneley R. N. Salicylic acid is a reducing substrate and not an effective inhibitor of ascorbate peroxidase. J Biol Chem. 1997 Aug 22;272(34):20998–21001. doi: 10.1074/jbc.272.34.20998. [DOI] [PubMed] [Google Scholar]
- Leon J., Lawton M. A., Raskin I. Hydrogen Peroxide Stimulates Salicylic Acid Biosynthesis in Tobacco. Plant Physiol. 1995 Aug;108(4):1673–1678. doi: 10.1104/pp.108.4.1673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine A., Pennell R. I., Alvarez M. E., Palmer R., Lamb C. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol. 1996 Apr 1;6(4):427–437. doi: 10.1016/s0960-9822(02)00510-9. [DOI] [PubMed] [Google Scholar]
- Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
- Lindgren P. B., Peet R. C., Panopoulos N. J. Gene cluster of Pseudomonas syringae pv. "phaseolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J Bacteriol. 1986 Nov;168(2):512–522. doi: 10.1128/jb.168.2.512-522.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- May M. J., Hammond-Kosack K. E., Jones JDG. Involvement of Reactive Oxygen Species, Glutathione Metabolism, and Lipid Peroxidation in the Cf-Gene-Dependent Defense Response of Tomato Cotyledons Induced by Race-Specific Elicitors of Cladosporium fulvum. Plant Physiol. 1996 Apr;110(4):1367–1379. doi: 10.1104/pp.110.4.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehdy M. C. Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol. 1994 Jun;105(2):467–472. doi: 10.1104/pp.105.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittler R., Lam E. Characterization of nuclease activities and DNA fragmentation induced upon hypersensitive response cell death and mechanical stress. Plant Mol Biol. 1997 May;34(2):209–221. doi: 10.1023/a:1005868402827. [DOI] [PubMed] [Google Scholar]
- Mittler R., Lam E. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell. 1995 Nov;7(11):1951–1962. doi: 10.1105/tpc.7.11.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittler R., Lam E. Sacrifice in the face of foes: pathogen-induced programmed cell death in plants. Trends Microbiol. 1996 Jan;4(1):10–15. doi: 10.1016/0966-842x(96)81499-5. [DOI] [PubMed] [Google Scholar]
- Mittler R., Shulaev V., Lam E. Coordinated Activation of Programmed Cell Death and Defense Mechanisms in Transgenic Tobacco Plants Expressing a Bacterial Proton Pump. Plant Cell. 1995 Jan;7(1):29–42. doi: 10.1105/tpc.7.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittler R., Shulaev V., Seskar M., Lam E. Inhibition of Programmed Cell Death in Tobacco Plants during a Pathogen-Induced Hypersensitive Response at Low Oxygen Pressure. Plant Cell. 1996 Nov;8(11):1991–2001. doi: 10.1105/tpc.8.11.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittler R., Simon L., Lam E. Pathogen-induced programmed cell death in tobacco. J Cell Sci. 1997 Jun;110(Pt 11):1333–1344. doi: 10.1242/jcs.110.11.1333. [DOI] [PubMed] [Google Scholar]
- Mittler R., Zilinskas B. A. Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem. 1993 Aug 1;212(2):540–546. doi: 10.1006/abio.1993.1366. [DOI] [PubMed] [Google Scholar]
- Mittler R., Zilinskas B. A. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem. 1992 Oct 25;267(30):21802–21807. [PubMed] [Google Scholar]
- Mittler R., Zilinskas B. A. Purification and characterization of pea cytosolic ascorbate peroxidase. Plant Physiol. 1991 Nov;97(3):962–968. doi: 10.1104/pp.97.3.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mittler R., Zilinskas B. A. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 1994 Mar;5(3):397–405. doi: 10.1111/j.1365-313x.1994.00397.x. [DOI] [PubMed] [Google Scholar]
- Orvar B. L., McPherson J., Ellis B. E. Pre-activating wounding response in tobacco prior to high-level ozone exposure prevents necrotic injury. Plant J. 1997 Feb;11(2):203–212. doi: 10.1046/j.1365-313x.1997.11020203.x. [DOI] [PubMed] [Google Scholar]
- Patterson W. R., Poulos T. L. Crystal structure of recombinant pea cytosolic ascorbate peroxidase. Biochemistry. 1995 Apr 4;34(13):4331–4341. doi: 10.1021/bi00013a023. [DOI] [PubMed] [Google Scholar]
- Rao M. V., Paliyath G., Ormrod D. P., Murr D. P., Watkins C. B. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol. 1997 Sep;115(1):137–149. doi: 10.1104/pp.115.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinbothe S., Reinbothe C., Heintzen C., Seidenbecher C., Parthier B. A methyl jasmonate-induced shift in the length of the 5' untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J. 1993 Apr;12(4):1505–1512. doi: 10.1002/j.1460-2075.1993.tb05794.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinbothe S., Reinbothe C., Parthier B. Methyl jasmonate-regulated translation of nuclear-encoded chloroplast proteins in barley (Hordeum vulgare L. cv. salome). J Biol Chem. 1993 May 15;268(14):10606–10611. [PubMed] [Google Scholar]
- Shimizu S., Eguchi Y., Kosaka H., Kamiike W., Matsuda H., Tsujimoto Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature. 1995 Apr 27;374(6525):811–813. doi: 10.1038/374811a0. [DOI] [PubMed] [Google Scholar]
- Shirasu K., Nakajima H., Rajasekhar V. K., Dixon R. A., Lamb C. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell. 1997 Feb;9(2):261–270. doi: 10.1105/tpc.9.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi H., Chen Z., Du H., Liu Y., Klessig D. F. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J. 1997 May;11(5):993–1005. doi: 10.1046/j.1365-313x.1997.11050993.x. [DOI] [PubMed] [Google Scholar]
- Tenhaken R., Rubel C. Salicylic Acid Is Needed in Hypersensitive Cell Death in Soybean but Does Not Act as a Catalase Inhibitor. Plant Physiol. 1997 Sep;115(1):291–298. doi: 10.1104/pp.115.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vayda M. E. Assessment of translational regulation by run-off translation of polysomes in vitro. Methods Cell Biol. 1995;50:349–359. doi: 10.1016/s0091-679x(08)61042-0. [DOI] [PubMed] [Google Scholar]
- Whitham S., Dinesh-Kumar S. P., Choi D., Hehl R., Corr C., Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 1994 Sep 23;78(6):1101–1115. doi: 10.1016/0092-8674(94)90283-6. [DOI] [PubMed] [Google Scholar]
- Yang Y., Shah J., Klessig D. F. Signal perception and transduction in plant defense responses. Genes Dev. 1997 Jul 1;11(13):1621–1639. doi: 10.1101/gad.11.13.1621. [DOI] [PubMed] [Google Scholar]
- Zychlinsky A., Prevost M. C., Sansonetti P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992 Jul 9;358(6382):167–169. doi: 10.1038/358167a0. [DOI] [PubMed] [Google Scholar]