Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Apr;10(4):599–612. doi: 10.1105/tpc.10.4.599

A glycoprotein modified with terminal N-acetylglucosamine and localized at the nuclear rim shows sequence similarity to aldose-1-epimerases.

A Heese-Peck 1, N V Raikhel 1
PMCID: PMC144007  PMID: 9548985

Abstract

Several glycoproteins that are present at the nuclear rim and at the nuclear pore complex of tobacco suspension-cultured cells are modified by O-linked oligosaccharides with terminal N-acetylglucosamine (GlcNAc). Here, we report on the purification of several of these glycoproteins, which are referred to as terminal GlcNAc (tGlcNAc) proteins. In vitro galactosylation of the tGlcNAc proteins generated glycoproteins with terminal galactosyl-beta-1, 4-GlcNAc and thus permitted their isolation by Erythrina crystagalli agglutinin affinity chromatography. Peptide sequence information derived from one tGlcNAc protein with an apparent molecular mass of 40 to 43 kD, designated gp40, made it possible to clone its gene. Interestingly, gp40 has 28 to 34% amino acid identity to aldose-1-epimerases from bacteria, and no gene encoding an aldose-1-epimerase has been isolated previously from higher organisms. Polyclonal antibodies were generated against recombinant gp40. Consistent with its purification as a putative nuclear pore complex protein, gp40 was localized to the nuclear rim, as shown by biochemical fractionation and immunofluorescence microscopy.

Full Text

The Full Text of this article is available as a PDF (713.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baba S., Arimoto Y., Yoshikawa D., Toyoda Y., Miwa I., Okuda J. The localization of mutarotase in rat kidney. Experientia. 1979 Aug 15;35(8):1094–1097. doi: 10.1007/BF01949964. [DOI] [PubMed] [Google Scholar]
  2. Bailey J. M., Fishman P. H., Pentchev P. G. Studies on mutarotases. I. Purification and properties of a mutarotase from higher plants. J Biol Chem. 1967 Sep 25;242(18):4263–4269. [PubMed] [Google Scholar]
  3. Bailey J. M., Fishman P. H., Pentchev P. G. Studies on mutarotases. VI. Enzyme levels and sugar reabsorption in developing rat kidney and intestine. J Biol Chem. 1970 Feb 10;245(3):559–563. [PubMed] [Google Scholar]
  4. Bar-Peled M., Raikhel N. V. A method for isolation and purification of specific antibodies to a protein fused to the GST. Anal Biochem. 1996 Oct 1;241(1):140–142. doi: 10.1006/abio.1996.0390. [DOI] [PubMed] [Google Scholar]
  5. Bouffard G. G., Rudd K. E., Adhya S. L. Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli. J Mol Biol. 1994 Dec 2;244(3):269–278. doi: 10.1006/jmbi.1994.1728. [DOI] [PubMed] [Google Scholar]
  6. Citron B. A., Donelson J. E. Sequence of the Saccharomyces GAL region and its transcription in vivo. J Bacteriol. 1984 Apr;158(1):269–278. doi: 10.1128/jb.158.1.269-278.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis L. I., Blobel G. Identification and characterization of a nuclear pore complex protein. Cell. 1986 Jun 6;45(5):699–709. doi: 10.1016/0092-8674(86)90784-1. [DOI] [PubMed] [Google Scholar]
  8. Davis L. I. The nuclear pore complex. Annu Rev Biochem. 1995;64:865–896. doi: 10.1146/annurev.bi.64.070195.004245. [DOI] [PubMed] [Google Scholar]
  9. Diedrich D. F., Stringham C. H. Active site comparison of mutarotase with the glucose carrier in human erythrocytes. Arch Biochem Biophys. 1970 Jun;138(2):499–505. doi: 10.1016/0003-9861(70)90374-7. [DOI] [PubMed] [Google Scholar]
  10. Diedrich D. F., Stringham C. H. Mutarotase: still candidate for the role of membrane glucose carrier? Arch Biochem Biophys. 1970 Jun;138(2):493–498. doi: 10.1016/0003-9861(70)90373-5. [DOI] [PubMed] [Google Scholar]
  11. Doye V., Hurt E. From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol. 1997 Jun;9(3):401–411. doi: 10.1016/s0955-0674(97)80014-2. [DOI] [PubMed] [Google Scholar]
  12. Driouich A., Faye L., Staehelin L. A. The plant Golgi apparatus: a factory for complex polysaccharides and glycoproteins. Trends Biochem Sci. 1993 Jun;18(6):210–214. doi: 10.1016/0968-0004(93)90191-o. [DOI] [PubMed] [Google Scholar]
  13. Duverger E., Pellerin-Mendes C., Mayer R., Roche A. C., Monsigny M. Nuclear import of glycoconjugates is distinct from the classical NLS pathway. J Cell Sci. 1995 Apr;108(Pt 4):1325–1332. doi: 10.1242/jcs.108.4.1325. [DOI] [PubMed] [Google Scholar]
  14. Dwyer N., Blobel G. A modified procedure for the isolation of a pore complex-lamina fraction from rat liver nuclei. J Cell Biol. 1976 Sep;70(3):581–591. doi: 10.1083/jcb.70.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Facchini P. J., Chappell J. Gene family for an elicitor-induced sesquiterpene cyclase in tobacco. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):11088–11092. doi: 10.1073/pnas.89.22.11088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  17. Fernandez J., Andrews L., Mische S. M. An improved procedure for enzymatic digestion of polyvinylidene difluoride-bound proteins for internal sequence analysis. Anal Biochem. 1994 Apr;218(1):112–117. doi: 10.1006/abio.1994.1148. [DOI] [PubMed] [Google Scholar]
  18. Fishman P. H., Kusiak J. W., Bailey J. M. Studies on mutarotase: photooxidation reactions and nature of the enzyme catalysis. Biochemistry. 1973 Jun 19;12(13):2540–2544. doi: 10.1021/bi00737a027. [DOI] [PubMed] [Google Scholar]
  19. Forbes D. J. Structure and function of the nuclear pore complex. Annu Rev Cell Biol. 1992;8:495–527. doi: 10.1146/annurev.cb.08.110192.002431. [DOI] [PubMed] [Google Scholar]
  20. Gatz C., Altschmied J., Hillen W. Cloning and expression of the Acinetobacter calcoaceticus mutarotase gene in Escherichia coli. J Bacteriol. 1986 Oct;168(1):31–39. doi: 10.1128/jb.168.1.31-39.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goldberg M. W., Allen T. D. Structural and functional organization of the nuclear envelope. Curr Opin Cell Biol. 1995 Jun;7(3):301–309. doi: 10.1016/0955-0674(95)80083-2. [DOI] [PubMed] [Google Scholar]
  22. Greber U. F., Senior A., Gerace L. A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J. 1990 May;9(5):1495–1502. doi: 10.1002/j.1460-2075.1990.tb08267.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hallberg E., Wozniak R. W., Blobel G. An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J Cell Biol. 1993 Aug;122(3):513–521. doi: 10.1083/jcb.122.3.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hart G. W. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem. 1997;66:315–335. doi: 10.1146/annurev.biochem.66.1.315. [DOI] [PubMed] [Google Scholar]
  25. Heese-Peck A., Cole R. N., Borkhsenious O. N., Hart G. W., Raikhel N. V. Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine. Plant Cell. 1995 Sep;7(9):1459–1471. doi: 10.1105/tpc.7.9.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hicks G. R., Raikhel N. V. Nuclear localization signal binding proteins in higher plant nuclei. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):734–738. doi: 10.1073/pnas.92.3.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hicks G. R., Raikhel N. V. Protein import into the nucleus: an integrated view. Annu Rev Cell Dev Biol. 1995;11:155–188. doi: 10.1146/annurev.cb.11.110195.001103. [DOI] [PubMed] [Google Scholar]
  28. Hicks G. R., Raikhel N. V. Specific binding of nuclear localization sequences to plant nuclei. Plant Cell. 1993 Aug;5(8):983–994. doi: 10.1105/tpc.5.8.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hicks G. R., Smith H. M., Lobreaux S., Raikhel N. V. Nuclear import in permeabilized protoplasts from higher plants has unique features. Plant Cell. 1996 Aug;8(8):1337–1352. doi: 10.1105/tpc.8.8.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hucho F., Wallenfels K. The enzymatically catalyzed mutarotaton. The mechanism of action of mutarotase (aldose 1-epimerase) from Escherichia coli. Eur J Biochem. 1971 Dec 10;23(3):489–496. doi: 10.1111/j.1432-1033.1971.tb01645.x. [DOI] [PubMed] [Google Scholar]
  31. Hurt E. C. A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J. 1988 Dec 20;7(13):4323–4334. doi: 10.1002/j.1460-2075.1988.tb03331.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jacobsen S. E., Binkowski K. A., Olszewski N. E. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9292–9296. doi: 10.1073/pnas.93.17.9292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Jarnik M., Aebi U. Toward a more complete 3-D structure of the nuclear pore complex. J Struct Biol. 1991 Dec;107(3):291–308. doi: 10.1016/1047-8477(91)90054-z. [DOI] [PubMed] [Google Scholar]
  34. Kiefer P., Acland P., Pappin D., Peters G., Dickson C. Competition between nuclear localization and secretory signals determines the subcellular fate of a single CUG-initiated form of FGF3. EMBO J. 1994 Sep 1;13(17):4126–4136. doi: 10.1002/j.1460-2075.1994.tb06730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kimura H. Schwannoma-derived growth factor must be transported into the nucleus to exert its mitogenic activity. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2165–2169. doi: 10.1073/pnas.90.6.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kita K., Omata S., Horigome T. Purification and characterization of a nuclear pore glycoprotein complex containing p62. J Biochem. 1993 Mar;113(3):377–382. doi: 10.1093/oxfordjournals.jbchem.a124054. [DOI] [PubMed] [Google Scholar]
  37. Kreppel L. K., Blomberg M. A., Hart G. W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem. 1997 Apr 4;272(14):9308–9315. doi: 10.1074/jbc.272.14.9308. [DOI] [PubMed] [Google Scholar]
  38. Lane W. S., Galat A., Harding M. W., Schreiber S. L. Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus. J Protein Chem. 1991 Apr;10(2):151–160. doi: 10.1007/BF01024778. [DOI] [PubMed] [Google Scholar]
  39. Lubas W. A., Frank D. W., Krause M., Hanover J. A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem. 1997 Apr 4;272(14):9316–9324. doi: 10.1074/jbc.272.14.9316. [DOI] [PubMed] [Google Scholar]
  40. Maher D. W., Lee B. A., Donoghue D. J. The alternatively spliced exon of the platelet-derived growth factor A chain encodes a nuclear targeting signal. Mol Cell Biol. 1989 May;9(5):2251–2253. doi: 10.1128/mcb.9.5.2251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Maskell D. J., Szabo M. J., Deadman M. E., Moxon E. R. The gal locus from Haemophilus influenzae: cloning, sequencing and the use of gal mutants to study lipopolysaccharide. Mol Microbiol. 1992 Oct;6(20):3051–3063. doi: 10.1111/j.1365-2958.1992.tb01763.x. [DOI] [PubMed] [Google Scholar]
  42. Masuda K., Xu Z. J., Takahashi S., Ito A., Ono M., Nomura K., Inoue M. Peripheral framework of carrot cell nucleus contains a novel protein predicted to exhibit a long alpha-helical domain. Exp Cell Res. 1997 Apr 10;232(1):173–181. doi: 10.1006/excr.1997.3531. [DOI] [PubMed] [Google Scholar]
  43. Merkle T., Leclerc D., Marshallsay C., Nagy F. A plant in vitro system for the nuclear import of proteins. Plant J. 1996 Dec;10(6):1177–1186. doi: 10.1046/j.1365-313x.1996.10061177.x. [DOI] [PubMed] [Google Scholar]
  44. Miller M. W., Hanover J. A. Functional nuclear pores reconstituted with beta 1-4 galactose-modified O-linked N-acetylglucosamine glycoproteins. J Biol Chem. 1994 Mar 25;269(12):9289–9297. [PubMed] [Google Scholar]
  45. Mollet B., Pilloud N. Galactose utilization in Lactobacillus helveticus: isolation and characterization of the galactokinase (galK) and galactose-1-phosphate uridyl transferase (galT) genes. J Bacteriol. 1991 Jul;173(14):4464–4473. doi: 10.1128/jb.173.14.4464-4473.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Mulhern S. A., Fishman P. H., Kusiak J. W., Bailey J. M. Physical characteristics and chemi-osmotic transformations of mutarotases from various species. J Biol Chem. 1973 Jun 25;248(12):4163–4173. [PubMed] [Google Scholar]
  47. Panté N., Aebi U. The nuclear pore complex. J Cell Biol. 1993 Sep;122(5):977–984. doi: 10.1083/jcb.122.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Poolman B., Royer T. J., Mainzer S. E., Schmidt B. F. Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase. J Bacteriol. 1990 Jul;172(7):4037–4047. doi: 10.1128/jb.172.7.4037-4047.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Puissant C., Houdebine L. M. An improvement of the single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Biotechniques. 1990 Feb;8(2):148–149. [PubMed] [Google Scholar]
  50. Radu A., Blobel G., Wozniak R. W. Nup107 is a novel nuclear pore complex protein that contains a leucine zipper. J Biol Chem. 1994 Jul 1;269(26):17600–17605. [PubMed] [Google Scholar]
  51. Raikhel N. Nuclear targeting in plants. Plant Physiol. 1992 Dec;100(4):1627–1632. doi: 10.1104/pp.100.4.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Roquemore E. P., Chou T. Y., Hart G. W. Detection of O-linked N-acetylglucosamine (O-GlcNAc) on cytoplasmic and nuclear proteins. Methods Enzymol. 1994;230:443–460. doi: 10.1016/0076-6879(94)30028-3. [DOI] [PubMed] [Google Scholar]
  53. Rout M. P., Wente S. R. Pores for thought: nuclear pore complex proteins. Trends Cell Biol. 1994 Oct;4(10):357–365. doi: 10.1016/0962-8924(94)90085-x. [DOI] [PubMed] [Google Scholar]
  54. Skrzypek M., Maleszka R. A gene homologous to that encoding UDP galactose-4-epimerase is inducible by xylose in the yeast Pachysolen tannophilus. Gene. 1994 Mar 11;140(1):127–129. doi: 10.1016/0378-1119(94)90742-0. [DOI] [PubMed] [Google Scholar]
  55. Smith H. M., Hicks G. R., Raikhel N. V. Importin alpha from Arabidopsis thaliana is a nuclear import receptor that recognizes three classes of import signals. Plant Physiol. 1997 Jun;114(2):411–417. doi: 10.1104/pp.114.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Spence A. M., Sheppard P. C., Davie J. R., Matuo Y., Nishi N., McKeehan W. L., Dodd J. G., Matusik R. J. Regulation of a bifunctional mRNA results in synthesis of secreted and nuclear probasin. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7843–7847. doi: 10.1073/pnas.86.20.7843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Toyoda Y., Miwa I., Okuda J. Multiple forms of mutarotases from the kidney, liver, and small intestine of rats: purification, properties, subcellular localization and developmental changes. J Biochem. 1983 Aug;94(2):421–431. doi: 10.1093/oxfordjournals.jbchem.a134372. [DOI] [PubMed] [Google Scholar]
  58. Willmitzer L., Wagner K. G. The isolation of nuclei from tissue-cultured plant cells. Exp Cell Res. 1981 Sep;135(1):69–77. doi: 10.1016/0014-4827(81)90300-1. [DOI] [PubMed] [Google Scholar]
  59. Wozniak R. W., Bartnik E., Blobel G. Primary structure analysis of an integral membrane glycoprotein of the nuclear pore. J Cell Biol. 1989 Jun;108(6):2083–2092. doi: 10.1083/jcb.108.6.2083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES