Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Apr;10(4):495–510. doi: 10.1105/tpc.10.4.495

Cell-to-cell and phloem-mediated transport of potato virus X. The role of virions

SS Cruz 1, AG Roberts 1, DA Prior 1, S Chapman 1, KJ Oparka 1
PMCID: PMC144013  PMID: 9548978

Abstract

Movement-deficient potato virus X (PVX) mutants tagged with the green fluorescent protein were used to investigate the role of the coat protein (CP) and triple gene block (TGB) proteins in virus movement. Mutants lacking either a functional CP or TGB were restricted to single epidermal cells. Microinjection of dextran probes into cells infected with the mutants showed that an increase in the plasmodesmal size exclusion limit was dependent on one or more of the TGB proteins and was independent of CP. Fluorescently labeled CP that was injected into epidermal cells was confined to the injected cells, showing that the CP lacks an intrinsic transport function. In additional experiments, transgenic plants expressing the PVX CP were used as rootstocks and grafted with nontransformed scions. Inoculation of the PVX CP mutants to the transgenic rootstocks resulted in cell-to-cell and systemic movement within the transgenic tissue. Translocation of the CP mutants into sink leaves of the nontransgenic scions was also observed, but infection was restricted to cells close to major veins. These results indicate that the PVX CP is transported through the phloem, unloads into the vascular tissue, and subsequently is transported between cells during the course of infection. Evidence is presented that PVX uses a novel strategy for cell-to-cell movement involving the transport of filamentous virions through plasmodesmata.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angell S. M., Davies C., Baulcombe D. C. Cell-to-cell movement of potato virus X is associated with a change in the size-exclusion limit of plasmodesmata in trichome cells of Nicotiana clevelandii. Virology. 1996 Feb 1;216(1):197–201. doi: 10.1006/viro.1996.0046. [DOI] [PubMed] [Google Scholar]
  2. Baratova L. A., Grebenshchikov N. I., Shishkov A. V., Kashirin I. A., Radavsky J. L., Järvekülg L., Saarma M. The topography of the surface of potato virus X: tritium planigraphy and immunological analysis. J Gen Virol. 1992 Feb;73(Pt 2):229–235. doi: 10.1099/0022-1317-73-2-229. [DOI] [PubMed] [Google Scholar]
  3. Baulcombe D. C., Chapman S., Santa Cruz S. Jellyfish green fluorescent protein as a reporter for virus infections. Plant J. 1995 Jun;7(6):1045–1053. doi: 10.1046/j.1365-313x.1995.07061045.x. [DOI] [PubMed] [Google Scholar]
  4. Beck D. L., Guilford P. J., Voot D. M., Andersen M. T., Forster R. L. Triple gene block proteins of white clover mosaic potexvirus are required for transport. Virology. 1991 Aug;183(2):695–702. doi: 10.1016/0042-6822(91)90998-q. [DOI] [PubMed] [Google Scholar]
  5. Carrington J. C., Kasschau K. D., Mahajan S. K., Schaad M. C. Cell-to-Cell and Long-Distance Transport of Viruses in Plants. Plant Cell. 1996 Oct;8(10):1669–1681. doi: 10.1105/tpc.8.10.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapman S., Hills G., Watts J., Baulcombe D. Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology. 1992 Nov;191(1):223–230. doi: 10.1016/0042-6822(92)90183-p. [DOI] [PubMed] [Google Scholar]
  7. Chapman S., Kavanagh T., Baulcombe D. Potato virus X as a vector for gene expression in plants. Plant J. 1992 Jul;2(4):549–557. doi: 10.1046/j.1365-313x.1992.t01-24-00999.x. [DOI] [PubMed] [Google Scholar]
  8. Citovsky V., Knorr D., Schuster G., Zambryski P. The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell. 1990 Feb 23;60(4):637–647. doi: 10.1016/0092-8674(90)90667-4. [DOI] [PubMed] [Google Scholar]
  9. Citovsky V., Wong M. L., Shaw A. L., Prasad B. V., Zambryski P. Visualization and characterization of tobacco mosaic virus movement protein binding to single-stranded nucleic acids. Plant Cell. 1992 Apr;4(4):397–411. doi: 10.1105/tpc.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cruz S. S., Chapman S., Roberts A. G., Roberts I. M., Prior D. A., Oparka K. J. Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6286–6290. doi: 10.1073/pnas.93.13.6286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Davies C., Hills G., Baulcombe D. C. Sub-cellular localization of the 25-kDa protein encoded in the triple gene block of potato virus X. Virology. 1993 Nov;197(1):166–175. doi: 10.1006/viro.1993.1577. [DOI] [PubMed] [Google Scholar]
  12. Ding B., Li Q., Nguyen L., Palukaitis P., Lucas W. J. Cucumber mosaic virus 3a protein potentiates cell-to-cell trafficking of CMV RNA in tobacco plants. Virology. 1995 Mar 10;207(2):345–353. doi: 10.1006/viro.1995.1093. [DOI] [PubMed] [Google Scholar]
  13. Ding X., Shintaku M. H., Carter S. A., Nelson R. S. Invasion of minor veins of tobacco leaves inoculated with tobacco mosaic virus mutants defective in phloem-dependent movement. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11155–11160. doi: 10.1073/pnas.93.20.11155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dolja V. V., Boyko V. P., Agranovsky A. A., Koonin E. V. Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: two families with distinct patterns of sequence and probably structure conservation. Virology. 1991 Sep;184(1):79–86. doi: 10.1016/0042-6822(91)90823-t. [DOI] [PubMed] [Google Scholar]
  15. Dolja V. V., Haldeman-Cahill R., Montgomery A. E., Vandenbosch K. A., Carrington J. C. Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology. 1995 Feb 1;206(2):1007–1016. doi: 10.1006/viro.1995.1023. [DOI] [PubMed] [Google Scholar]
  16. Dolja V. V., Haldeman R., Robertson N. L., Dougherty W. G., Carrington J. C. Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J. 1994 Mar 15;13(6):1482–1491. doi: 10.1002/j.1460-2075.1994.tb06403.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Esau K., Cronshaw J., Hoefert L. L. Relation of beet yellows virus to the phloem and to movement in the sieve tube. J Cell Biol. 1967 Jan;32(1):71–87. doi: 10.1083/jcb.32.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fisher D. B., Wu Y., Ku M. S. Turnover of soluble proteins in the wheat sieve tube. Plant Physiol. 1992 Nov;100(3):1433–1441. doi: 10.1104/pp.100.3.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Forster R. L., Beck D. L., Guilford P. J., Voot D. M., Van Dolleweerd C. J., Andersen M. T. The coat protein of white clover mosaic potexvirus has a role in facilitating cell-to-cell transport in plants. Virology. 1992 Nov;191(1):480–484. doi: 10.1016/0042-6822(92)90215-b. [DOI] [PubMed] [Google Scholar]
  20. Fujiwara T., Giesman-Cookmeyer D., Ding B., Lommel S. A., Lucas W. J. Cell-to-Cell Trafficking of Macromolecules through Plasmodesmata Potentiated by the Red Clover Necrotic Mosaic Virus Movement Protein. Plant Cell. 1993 Dec;5(12):1783–1794. doi: 10.1105/tpc.5.12.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goodman R. M. Reconstitution of potato virus X in vitro. I. Properties of the dissociated protein structural subunits. Virology. 1975 Dec;68(2):287–298. doi: 10.1016/0042-6822(75)90272-x. [DOI] [PubMed] [Google Scholar]
  22. Hefferon K. L., Doyle S., AbouHaidar M. G. Immunological detection of the 8K protein of potato virus X (PVX) in cell walls of PVX-infected tobacco and transgenic potato. Arch Virol. 1997;142(2):425–433. doi: 10.1007/s007050050089. [DOI] [PubMed] [Google Scholar]
  23. Heinlein M., Epel B. L., Padgett H. S., Beachy R. N. Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science. 1995 Dec 22;270(5244):1983–1985. doi: 10.1126/science.270.5244.1983. [DOI] [PubMed] [Google Scholar]
  24. Kalinina N. O., Fedorkin O. N., Samuilova O. V., Maiss E., Korpela T., Morozov SYu, Atabekov J. G. Expression and biochemical analyses of the recombinant potato virus X 25K movement protein. FEBS Lett. 1996 Nov 11;397(1):75–78. doi: 10.1016/s0014-5793(96)01138-6. [DOI] [PubMed] [Google Scholar]
  25. Leisner S. M., Turgeon R. Movement of virus and photoassimilate in the phloem: a comparative analysis. Bioessays. 1993 Nov;15(11):741–748. doi: 10.1002/bies.950151107. [DOI] [PubMed] [Google Scholar]
  26. Lucas W. J., Bouché-Pillon S., Jackson D. P., Nguyen L., Baker L., Ding B., Hake S. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science. 1995 Dec 22;270(5244):1980–1983. doi: 10.1126/science.270.5244.1980. [DOI] [PubMed] [Google Scholar]
  27. Maule A. J. Plant-virus movement: de novo process or redeployed machinery? Trends Microbiol. 1994 Sep;2(9):305–306. doi: 10.1016/0966-842x(94)90445-6. [DOI] [PubMed] [Google Scholar]
  28. Mezitt L. A., Lucas W. J. Plasmodesmal cell-to-cell transport of proteins and nucleic acids. Plant Mol Biol. 1996 Oct;32(1-2):251–273. doi: 10.1007/BF00039385. [DOI] [PubMed] [Google Scholar]
  29. Murillo I., Cavallarin L., San Segundo B. The maize pathogenesis-related PRms protein localizes to plasmodesmata in maize radicles. Plant Cell. 1997 Feb;9(2):145–156. doi: 10.1105/tpc.9.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Noueiry A. O., Lucas W. J., Gilbertson R. L. Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell. 1994 Mar 11;76(5):925–932. doi: 10.1016/0092-8674(94)90366-2. [DOI] [PubMed] [Google Scholar]
  31. Oparka K. J., Prior D. A., Santa Cruz S., Padgett H. S., Beachy R. N. Gating of epidermal plasmodesmata is restricted to the leading edge of expanding infection sites of tobacco mosaic virus (TMV). Plant J. 1997 Oct;12(4):781–789. doi: 10.1046/j.1365-313x.1997.12040781.x. [DOI] [PubMed] [Google Scholar]
  32. Petty I. T., Jackson A. O. Mutational analysis of barley stripe mosaic virus RNA beta. Virology. 1990 Dec;179(2):712–718. doi: 10.1016/0042-6822(90)90138-h. [DOI] [PubMed] [Google Scholar]
  33. Roberts A. G., Cruz S. S., Roberts I. M., Prior DAM., Turgeon R., Oparka K. J. Phloem Unloading in Sink Leaves of Nicotiana benthamiana: Comparison of a Fluorescent Solute with a Fluorescent Virus. Plant Cell. 1997 Aug;9(8):1381–1396. doi: 10.1105/tpc.9.8.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rodríguez-Cerezo E., Findlay K., Shaw J. G., Lomonossoff G. P., Qiu S. G., Linstead P., Shanks M., Risco C. The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology. 1997 Sep 29;236(2):296–306. doi: 10.1006/viro.1997.8736. [DOI] [PubMed] [Google Scholar]
  35. Rouleau M., Smith R. J., Bancroft J. B., Mackie G. A. Subcellular immunolocalization of the coat protein of two potexviruses in infected Chenopodium quinoa. Virology. 1995 Dec 1;214(1):314–318. doi: 10.1006/viro.1995.9922. [DOI] [PubMed] [Google Scholar]
  36. SIEGEL A., ZAITLIN M., SEHGAL O. P. The isolation of defective tobacco mosaic virus strains. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1845–1851. doi: 10.1073/pnas.48.10.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shalla T. A., Shepard J. F. The structure and antigenic analysis of amorphous inclusion bodies induced by potato virus X. Virology. 1972 Sep;49(3):654–667. doi: 10.1016/0042-6822(72)90522-3. [DOI] [PubMed] [Google Scholar]
  38. Sit T. L., AbouHaidar M. G. Infectious RNA transcripts derived from cloned cDNA of papaya mosaic virus: effect of mutations to the capsid and polymerase proteins. J Gen Virol. 1993 Jun;74(Pt 6):1133–1140. doi: 10.1099/0022-1317-74-6-1133. [DOI] [PubMed] [Google Scholar]
  39. Sjolund R. D. The Phloem Sieve Element: A River Runs through It. Plant Cell. 1997 Jul;9(7):1137–1146. doi: 10.1105/tpc.9.7.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Suzuki M., Kuwata S., Kataoka J., Masuta C., Nitta N., Takanami Y. Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology. 1991 Jul;183(1):106–113. doi: 10.1016/0042-6822(91)90123-s. [DOI] [PubMed] [Google Scholar]
  41. Takamatsu N., Ishikawa M., Meshi T., Okada Y. Expression of bacterial chloramphenicol acetyltransferase gene in tobacco plants mediated by TMV-RNA. EMBO J. 1987 Feb;6(2):307–311. doi: 10.1002/j.1460-2075.1987.tb04755.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Waigmann E., Lucas W. J., Citovsky V., Zambryski P. Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1433–1437. doi: 10.1073/pnas.91.4.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weintraub M., Ragetli H. W., Leung E. Elongated virus particles in plasmodesmata. J Ultrastruct Res. 1976 Sep;56(3):351–364. doi: 10.1016/s0022-5320(76)90010-1. [DOI] [PubMed] [Google Scholar]
  44. Wieczorek A., Sanfaçon H. Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology. 1993 Jun;194(2):734–742. doi: 10.1006/viro.1993.1314. [DOI] [PubMed] [Google Scholar]
  45. Wolf S., Deom C. M., Beachy R. N., Lucas W. J. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science. 1989 Oct 20;246(4928):377–379. doi: 10.1126/science.246.4928.377. [DOI] [PubMed] [Google Scholar]
  46. Xiong Z., Kim K. H., Giesman-Cookmeyer D., Lommel S. A. The roles of the red clover necrotic mosaic virus capsid and cell-to-cell movement proteins in systemic infection. Virology. 1993 Jan;192(1):27–32. doi: 10.1006/viro.1993.1004. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES