Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 May;10(5):825–836. doi: 10.1105/tpc.10.5.825

Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles

Hara-Nishimura 1, Shimada 1, Hatano 1, Takeuchi 1, Nishimura 1
PMCID: PMC144021  PMID: 9596640

Abstract

Novel vesicles that accumulate large amounts of proprotein precursors of storage proteins were purified from maturing pumpkin seeds. These vesicles were designated precursor-accumulating (PAC) vesicles and had diameters of 200 to 400 nm. They contained an electron-dense core of storage proteins surrounded by an electron-translucent layer, and some vesicles also contained small vesicle-like structures. Immunocytochemical analysis revealed numerous electron-dense aggregates of storage proteins within the endoplasmic reticulum. It is likely that these aggregates develop into the electron-dense cores of the PAC vesicles and then leave the endoplasmic reticulum. Immunocytochemical analysis also showed that complex glycans are associated with the peripheral region of PAC vesicles but not the electron-dense cores, indicating that Golgi-derived glycoproteins are incorporated into the PAC vesicles. These results suggest that the unique PAC vesicles might mediate a transport pathway for insoluble aggregates of storage proteins directly to protein storage vacuoles.

Full Text

The Full Text of this article is available as a PDF (490.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. U., Bar-Peled M., Raikhel N. V. Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol. 1997 May;114(1):325–336. doi: 10.1104/pp.114.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becherer K. A., Rieder S. E., Emr S. D., Jones E. W. Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. Mol Biol Cell. 1996 Apr;7(4):579–594. doi: 10.1091/mbc.7.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FREUND J. The effect of paraffin oil and mycobacteria on antibody formation and sensitization; a review. Am J Clin Pathol. 1951 Jul;21(7):645–656. doi: 10.1093/ajcp/21.7.645. [DOI] [PubMed] [Google Scholar]
  4. Hara-Hishimura I., Takeuchi Y., Inoue K., Nishimura M. Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J. 1993 Nov;4(5):793–800. doi: 10.1046/j.1365-313x.1993.04050793.x. [DOI] [PubMed] [Google Scholar]
  5. Hara-Nishimura I., Inoue K., Nishimura M. A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett. 1991 Dec 2;294(1-2):89–93. doi: 10.1016/0014-5793(91)81349-d. [DOI] [PubMed] [Google Scholar]
  6. Hara-Nishimura I., Nishimura M., Akazawa T. Biosynthesis and Intracellular Transport of 11S Globulin in Developing Pumpkin Cotyledons. Plant Physiol. 1985 Mar;77(3):747–752. doi: 10.1104/pp.77.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hara-Nishimura I., Nishimura M., Matsubara H., Akazawa T. Suborganellar localization of proteinase catalyzing the limited hydrolysis of pumpkin globulin. Plant Physiol. 1982 Sep;70(3):699–703. doi: 10.1104/pp.70.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hara-Nishimura I., Nishimura M. Proglobulin processing enzyme in vacuoles isolated from developing pumpkin cotyledons. Plant Physiol. 1987 Oct;85(2):440–445. doi: 10.1104/pp.85.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hara-Nishimura I., Takeuchi Y., Nishimura M. Molecular characterization of a vacuolar processing enzyme related to a putative cysteine proteinase of Schistosoma mansoni. Plant Cell. 1993 Nov;5(11):1651–1659. doi: 10.1105/tpc.5.11.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hatano K., Shimada T., Hiraiwa N., Nishimura M., Hara-Nishimura I. A rapid increase in the level of binding protein (BiP) is accompanied by synthesis and degradation of storage proteins in pumpkin cotyledons. Plant Cell Physiol. 1997 Mar;38(3):344–351. doi: 10.1093/oxfordjournals.pcp.a029172. [DOI] [PubMed] [Google Scholar]
  11. Hiraiwa N., Kondo M., Nishimura M., Hara-Nishimura I. An aspartic endopeptidase is involved in the breakdown of propeptides of storage proteins in protein-storage vacuoles of plants. Eur J Biochem. 1997 May 15;246(1):133–141. doi: 10.1111/j.1432-1033.1997.00133.x. [DOI] [PubMed] [Google Scholar]
  12. Hiraiwa N., Nishimura M., Hara-Nishimura I. Expression and activation of the vacuolar processing enzyme in Saccharomyces cerevisiae. Plant J. 1997 Oct;12(4):819–829. doi: 10.1046/j.1365-313x.1997.12040819.x. [DOI] [PubMed] [Google Scholar]
  13. Hohl I., Robinson D. G., Chrispeels M. J., Hinz G. Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci. 1996 Oct;109(Pt 10):2539–2550. doi: 10.1242/jcs.109.10.2539. [DOI] [PubMed] [Google Scholar]
  14. Inoue K., Motozaki A., Takeuchi Y., Nishimura M., Hara-Nishimura I. Molecular characterization of proteins in protein-body membrane that disappear most rapidly during transformation of protein bodies into vacuoles. Plant J. 1995 Feb;7(2):235–243. doi: 10.1046/j.1365-313x.1995.7020235.x. [DOI] [PubMed] [Google Scholar]
  15. Inoue K., Takeuchi Y., Nishimura M., Hara-Nishimura I. Characterization of two integral membrane proteins located in the protein bodies of pumpkin seeds. Plant Mol Biol. 1995 Sep;28(6):1089–1101. doi: 10.1007/BF00032669. [DOI] [PubMed] [Google Scholar]
  16. Kirsch T., Paris N., Butler J. M., Beevers L., Rogers J. C. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3403–3407. doi: 10.1073/pnas.91.8.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Larkins B. A., Hurkman W. J. Synthesis and deposition of zein in protein bodies of maize endosperm. Plant Physiol. 1978 Aug;62(2):256–263. doi: 10.1104/pp.62.2.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levanony H., Rubin R., Altschuler Y., Galili G. Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol. 1992 Dec;119(5):1117–1128. doi: 10.1083/jcb.119.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Li X., Wu Y., Zhang D. Z., Gillikin J. W., Boston R. S., Franceschi V. R., Okita T. W. Rice prolamine protein body biogenesis: a BiP-mediated process. Science. 1993 Nov 12;262(5136):1054–1056. doi: 10.1126/science.8235623. [DOI] [PubMed] [Google Scholar]
  20. Maeshima M., Hara-Nishimura I., Takeuchi Y., Nishimura M. Accumulation of Vacuolar H+-Pyrophosphatase and H+-ATPase during Reformation of the Central Vacuole in Germinating Pumpkin Seeds. Plant Physiol. 1994 Sep;106(1):61–69. doi: 10.1104/pp.106.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mitsui T., Akazawa T., Christeller J. T., Tartakoff A. M. Biosynthesis of rice seed alpha-amylase: two pathways of amylase secretion by the scutellum. Arch Biochem Biophys. 1985 Aug 15;241(1):315–328. doi: 10.1016/0003-9861(85)90388-1. [DOI] [PubMed] [Google Scholar]
  22. Okita Thomas W., Rogers John C. COMPARTMENTATION OF PROTEINS IN THE ENDOMEMBRANE SYSTEM OF PLANT CELLS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):327–350. doi: 10.1146/annurev.arplant.47.1.327. [DOI] [PubMed] [Google Scholar]
  23. Paris N., Rogers S. W., Jiang L., Kirsch T., Beevers L., Phillips T. E., Rogers J. C. Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol. 1997 Sep;115(1):29–39. doi: 10.1104/pp.115.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paris N., Stanley C. M., Jones R. L., Rogers J. C. Plant cells contain two functionally distinct vacuolar compartments. Cell. 1996 May 17;85(4):563–572. doi: 10.1016/s0092-8674(00)81256-8. [DOI] [PubMed] [Google Scholar]
  25. Pryer N. K., Wuestehube L. J., Schekman R. Vesicle-mediated protein sorting. Annu Rev Biochem. 1992;61:471–516. doi: 10.1146/annurev.bi.61.070192.002351. [DOI] [PubMed] [Google Scholar]
  26. Sato M. H., Nakamura N., Ohsumi Y., Kouchi H., Kondo M., Hara-Nishimura I., Nishimura M., Wada Y. The AtVAM3 encodes a syntaxin-related molecule implicated in the vacuolar assembly in Arabidopsis thaliana. J Biol Chem. 1997 Sep 26;272(39):24530–24535. doi: 10.1074/jbc.272.39.24530. [DOI] [PubMed] [Google Scholar]
  27. Shimada T., Hiraiwa N., Nishimura M., Hara-Nishimura I. Vacuolar processing enzyme of soybean that converts proproteins to the corresponding mature forms. Plant Cell Physiol. 1994 Jun;35(4):713–718. doi: 10.1093/oxfordjournals.pcp.a078648. [DOI] [PubMed] [Google Scholar]
  28. Shimada T., Kuroyanagi M., Nishimura M., Hara-Nishimura I. A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol. 1997 Dec;38(12):1414–1420. doi: 10.1093/oxfordjournals.pcp.a029138. [DOI] [PubMed] [Google Scholar]
  29. Strzałka K., Hara-Nishimura I., Nishimura M. Changes in physical properties of vacuolar membrane during transformation of protein bodies into vacuoles in germinating pumpkin seeds. Biochim Biophys Acta. 1995 Nov 1;1239(2):103–110. doi: 10.1016/0005-2736(95)00141-o. [DOI] [PubMed] [Google Scholar]
  30. Tezuka K., Hayashi M., Ishihara H., Nishimura M., Onozaki K., Takahashi N. Purification and substrate specificity of beta-xylosidase from sycamore cell (Acer pseudoplatanus L.): application for structural analysis of xylose-containing N-linked oligosaccharides. Anal Biochem. 1993 Jun;211(2):205–209. doi: 10.1006/abio.1993.1258. [DOI] [PubMed] [Google Scholar]
  31. Van der Wilden W., Herman E. M., Chrispeels M. J. Protein bodies of mung bean cotyledons as autophagic organelles. Proc Natl Acad Sci U S A. 1980 Jan;77(1):428–432. doi: 10.1073/pnas.77.1.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. da Silva Conceiço A., Marty-Mazars D., Bassham D. C., Sanderfoot A. A., Marty F., Raikhel N. V. The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. Plant Cell. 1997 Apr;9(4):571–582. [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES