Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Jun;10(6):1031–1042. doi: 10.1105/tpc.10.6.1031

Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide.

L Frigerio 1, M de Virgilio 1, A Prada 1, F Faoro 1, A Vitale 1
PMCID: PMC144029  PMID: 9634590

Abstract

Phaseolin, one of the major legume proteins for human nutrition, is a trimeric glycoprotein of the 7S class that accumulates in the protein storage vacuoles of common bean. Phaseolin is cotranslationally introduced into the lumen of the endoplasmic reticulum; from there, it is transported through the Golgi complex to the storage vacuoles. Phaseolin is also transported to the vacuole in vegetative tissues of transgenic plants. By transient and permanent expression in tobacco leaf cells, we show here that vacuolar sorting of phaseolin is saturable and that saturation leads to Golgi-mediated secretion from the cell. A mutated phaseolin, in which the four C-terminal residues (Ala, Phe, Val, and Tyr) were deleted, efficiently formed trimers but was secreted entirely outside of the cells in transgenic tobacco leaves, indicating that the deleted sequence contains information necessary for interactions with the saturable vacuolar sorting machinery. In the apoplast, the secreted phaseolin remained intact; this is similar to what occurs to wild-type phaseolin in bean storage vacuoles, whereas in vegetative vacuoles of transgenic plants, the storage protein is fragmented.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. U., Bar-Peled M., Raikhel N. V. Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol. 1997 May;114(1):325–336. doi: 10.1104/pp.114.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. An G., Watson B. D., Stachel S., Gordon M. P., Nester E. W. New cloning vehicles for transformation of higher plants. EMBO J. 1985 Feb;4(2):277–284. doi: 10.1002/j.1460-2075.1985.tb03626.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bagga S., Sutton D., Kemp J. D., Sengupta-Gopalan C. Constitutive expression of the beta-phaseolin gene in different tissues of transgenic alfalfa does not ensure phaseolin accumulation in non-seed tissue. Plant Mol Biol. 1992 Sep;19(6):951–958. doi: 10.1007/BF00040527. [DOI] [PubMed] [Google Scholar]
  4. Bednarek S. Y., Wilkins T. A., Dombrowski J. E., Raikhel N. V. A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell. 1990 Dec;2(12):1145–1155. doi: 10.1105/tpc.2.12.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ceriotti A., Pedrazzini E., Fabbrini M. S., Zoppe M., Bollini R., Vitale A. Expression of the wild-type and mutated vacuolar storage protein phaseolin in Xenopus oocytes reveals relationships between assembly and intracellular transport. Eur J Biochem. 1991 Dec 18;202(3):959–968. doi: 10.1111/j.1432-1033.1991.tb16456.x. [DOI] [PubMed] [Google Scholar]
  6. D'Amico L., Valsasina B., Daminati M. G., Fabbrini M. S., Nitti G., Bollini R., Ceriotti A., Vitale A. Bean homologs of the mammalian glucose-regulated proteins: induction by tunicamycin and interaction with newly synthesized seed storage proteins in the endoplasmic reticulum. Plant J. 1992 Jul;2(4):443–455. doi: 10.1111/j.1365-313x.1992.00443.x. [DOI] [PubMed] [Google Scholar]
  7. Denecke J., Botterman J., Deblaere R. Protein secretion in plant cells can occur via a default pathway. Plant Cell. 1990 Jan;2(1):51–59. doi: 10.1105/tpc.2.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dombrowski J. E., Schroeder M. R., Bednarek S. Y., Raikhel N. V. Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell. 1993 May;5(5):587–596. doi: 10.1105/tpc.5.5.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dyer J. M., Nelson J. W., Murai N. Extensive modifications for methionine enhancement in the beta-barrels do not alter the structural stability of the bean seed storage protein phaseolin. J Protein Chem. 1995 Nov;14(8):665–678. doi: 10.1007/BF01886905. [DOI] [PubMed] [Google Scholar]
  10. Hohl I., Robinson D. G., Chrispeels M. J., Hinz G. Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci. 1996 Oct;109(Pt 10):2539–2550. doi: 10.1242/jcs.109.10.2539. [DOI] [PubMed] [Google Scholar]
  11. Hunt D. C., Chrispeels M. J. The signal Peptide of a vacuolar protein is necessary and sufficient for the efficient secretion of a cytosolic protein. Plant Physiol. 1991 May;96(1):18–25. doi: 10.1104/pp.96.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kirsch T., Saalbach G., Raikhel N. V., Beevers L. Interaction of a potential vacuolar targeting receptor with amino- and carboxyl-terminal targeting determinants. Plant Physiol. 1996 Jun;111(2):469–474. doi: 10.1104/pp.111.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lawrence M. C., Izard T., Beuchat M., Blagrove R. J., Colman P. M. Structure of phaseolin at 2.2 A resolution. Implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. J Mol Biol. 1994 May 20;238(5):748–776. doi: 10.1006/jmbi.1994.1333. [DOI] [PubMed] [Google Scholar]
  14. Lawrence M. C., Suzuki E., Varghese J. N., Davis P. C., Van Donkelaar A., Tulloch P. A., Colman P. M. The three-dimensional structure of the seed storage protein phaseolin at 3 A resolution. EMBO J. 1990 Jan;9(1):9–15. doi: 10.1002/j.1460-2075.1990.tb08074.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Matsuoka K., Bassham D. C., Raikhel N. V., Nakamura K. Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells. J Cell Biol. 1995 Sep;130(6):1307–1318. doi: 10.1083/jcb.130.6.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murai N., Kemp J. D., Sutton D. W., Murray M. G., Slightom J. L., Merlo D. J., Reichert N. A., Sengupta-Gopalan C., Stock C. A., Barker R. F., Hall T. C. Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science. 1983 Nov 4;222(4623):476–482. doi: 10.1126/science.222.4623.476. [DOI] [PubMed] [Google Scholar]
  17. Neuhaus J. M., Pietrzak M., Boller T. Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space. Plant J. 1994 Jan;5(1):45–54. doi: 10.1046/j.1365-313x.1994.5010045.x. [DOI] [PubMed] [Google Scholar]
  18. Neuhaus J. M., Sticher L., Meins F., Jr, Boller T. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10362–10366. doi: 10.1073/pnas.88.22.10362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Okita Thomas W., Rogers John C. COMPARTMENTATION OF PROTEINS IN THE ENDOMEMBRANE SYSTEM OF PLANT CELLS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):327–350. doi: 10.1146/annurev.arplant.47.1.327. [DOI] [PubMed] [Google Scholar]
  20. Paris N., Rogers S. W., Jiang L., Kirsch T., Beevers L., Phillips T. E., Rogers J. C. Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol. 1997 Sep;115(1):29–39. doi: 10.1104/pp.115.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Paris N., Stanley C. M., Jones R. L., Rogers J. C. Plant cells contain two functionally distinct vacuolar compartments. Cell. 1996 May 17;85(4):563–572. doi: 10.1016/s0092-8674(00)81256-8. [DOI] [PubMed] [Google Scholar]
  22. Pedrazzini E., Giovinazzo G., Bielli A., de Virgilio M., Frigerio L., Pesca M., Faoro F., Bollini R., Ceriotti A., Vitale A. Protein quality control along the route to the plant vacuole. Plant Cell. 1997 Oct;9(10):1869–1880. doi: 10.1105/tpc.9.10.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pueyo J. J., Chrispeels M. J., Herman E. M. Degradation of transport-competent destabilized phaseolin with a signal for retention in the endoplasmic reticulum occurs in the vacuole. Planta. 1995;196(3):586–596. doi: 10.1007/BF00203660. [DOI] [PubMed] [Google Scholar]
  24. Rothman J. H., Hunter C. P., Valls L. A., Stevens T. H. Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene. Proc Natl Acad Sci U S A. 1986 May;83(10):3248–3252. doi: 10.1073/pnas.83.10.3248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saalbach G., Rosso M., Schumann U. The vacuolar targeting signal of the 2S albumin from Brazil nut resides at the C terminus and involves the C-terminal propeptide as an essential element. Plant Physiol. 1996 Nov;112(3):975–985. doi: 10.1104/pp.112.3.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schroeder M. R., Borkhsenious O. N., Matsuoka K., Nakamura K., Raikhel N. V. Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Physiol. 1993 Feb;101(2):451–458. doi: 10.1104/pp.101.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sengupta-Gopalan C., Reichert N. A., Barker R. F., Hall T. C., Kemp J. D. Developmentally regulated expression of the bean beta-phaseolin gene in tobacco seed. Proc Natl Acad Sci U S A. 1985 May;82(10):3320–3324. doi: 10.1073/pnas.82.10.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Slightom J. L., Drong R. F., Klassy R. C., Hoffman L. M. Nucleotide sequences from phaseolin cDNA clones: the major storage proteins from Phaseolus vulgaris are encoded by two unique gene families. Nucleic Acids Res. 1985 Sep 25;13(18):6483–6498. doi: 10.1093/nar/13.18.6483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  30. Stevens T. H., Rothman J. H., Payne G. S., Schekman R. Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y. J Cell Biol. 1986 May;102(5):1551–1557. doi: 10.1083/jcb.102.5.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sturm A., Van Kuik J. A., Vliegenthart J. F., Chrispeels M. J. Structure, position, and biosynthesis of the high mannose and the complex oligosaccharide side chains of the bean storage protein phaseolin. J Biol Chem. 1987 Oct 5;262(28):13392–13403. [PubMed] [Google Scholar]
  32. Tabe L. M., Wardley-Richardson T., Ceriotti A., Aryan A., McNabb W., Moore A., Higgins T. J. A biotechnological approach to improving the nutritive value of alfalfa. J Anim Sci. 1995 Sep;73(9):2752–2759. doi: 10.2527/1995.7392752x. [DOI] [PubMed] [Google Scholar]
  33. Wandelt C. I., Khan M. R., Craig S., Schroeder H. E., Spencer D., Higgins T. J. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J. 1992 Mar;2(2):181–192. doi: 10.1046/j.1365-313x.1992.t01-41-00999.x. [DOI] [PubMed] [Google Scholar]
  34. Zheng Z., Sumi K., Tanaka K., Murai N. The Bean Seed Storage Protein [beta]-Phaseolin Is Synthesized, Processed, and Accumulated in the Vacuolar Type-II Protein Bodies of Transgenic Rice Endosperm. Plant Physiol. 1995 Nov;109(3):777–786. doi: 10.1104/pp.109.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES