Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Jun;10(6):967–979. doi: 10.1105/tpc.10.6.967

A potential signaling role for profilin in pollen of Papaver rhoeas.

S R Clarke 1, C J Staiger 1, B C Gibbon 1, V E Franklin-Tong 1
PMCID: PMC144038  PMID: 9634585

Abstract

Regulation of pollen tube growth is known to involve alterations in intracellular calcium levels and phosphoinositide signaling, although the mechanisms involved are unclear. However, it appears likely that pollination events involve a complex interplay between signaling pathways and components of the actin cytoskeleton in pollen. In many eukaryotic cells, actin binding proteins function as stimulus-response modulators, translating signals into alterations in the cytoplasmic architecture. In this study, we examined whether profilin, which is a member of this class of signaling intermediate, might play a similar role in pollen. We have analyzed the functional properties of native profilin from pollen of Papaver rhoeas and have investigated the effects of profilin on the phosphorylation of pollen proteins in vitro by adding a slight excess of profilin to cytosolic pollen extracts. We present clear evidence that profilin interacts with soluble pollen components, resulting in dramatic alterations in the phosphorylation of several proteins. We also show, albeit in vitro, the involvement of profilin in modulating the activity of a signaling component(s) affecting protein phosphorylation. Our data, which suggest that pollen profilin can regulate actin-based cytoskeletal protein assembly and protein kinase or phosphatase activity, indicate a possible role for the involvement of profilin in signaling pathways that may regulate pollen tube growth.

Full Text

The Full Text of this article is available as a PDF (215.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez-Martinez M. T., Mani J. C., Porte F., Faivre-Sarrailh C., Liautard J. P., Sri Widada J. Characterization of the interaction between annexin I and profilin. Eur J Biochem. 1996 Jun 15;238(3):777–784. doi: 10.1111/j.1432-1033.1996.0777w.x. [DOI] [PubMed] [Google Scholar]
  2. Alvarez-Martinez M. T., Porte F., Liautard J. P., Sri Widada J. Effects of profilin-annexin I association on some properties of both profilin and annexin I: modification of the inhibitory activity of profilin on actin polymerization and inhibition of the self-association of annexin I and its interactions with liposomes. Biochim Biophys Acta. 1997 May 23;1339(2):331–340. doi: 10.1016/s0167-4838(97)00018-6. [DOI] [PubMed] [Google Scholar]
  3. Babich M., Foti L. R., Sykaluk L. L., Clark C. R. Profilin forms tetramers that bind to G-actin. Biochem Biophys Res Commun. 1996 Jan 5;218(1):125–131. doi: 10.1006/bbrc.1996.0022. [DOI] [PubMed] [Google Scholar]
  4. Chang F., Drubin D., Nurse P. cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. J Cell Biol. 1997 Apr 7;137(1):169–182. doi: 10.1083/jcb.137.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Corte V., Gettemans J., Vandekerckhove J. Phosphatidylinositol 4,5-bisphosphate specifically stimulates PP60(c-src) catalyzed phosphorylation of gelsolin and related actin-binding proteins. FEBS Lett. 1997 Jan 20;401(2-3):191–196. doi: 10.1016/s0014-5793(96)01471-8. [DOI] [PubMed] [Google Scholar]
  6. Domke T., Federau T., Schlüter K., Giehl K., Valenta R., Schomburg D., Jockusch B. M. Birch pollen profilin: structural organization and interaction with poly-(L-proline) peptides as revealed by NMR. FEBS Lett. 1997 Jul 14;411(2-3):291–295. doi: 10.1016/s0014-5793(97)00719-9. [DOI] [PubMed] [Google Scholar]
  7. Estruch J. J., Kadwell S., Merlin E., Crossland L. Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8837–8841. doi: 10.1073/pnas.91.19.8837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Evangelista M., Blundell K., Longtine M. S., Chow C. J., Adames N., Pringle J. R., Peter M., Boone C. Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science. 1997 Apr 4;276(5309):118–122. doi: 10.1126/science.276.5309.118. [DOI] [PubMed] [Google Scholar]
  9. Franklin-Tong V. E., Drobak B. K., Allan A. C., Watkins PAC., Trewavas A. J. Growth of Pollen Tubes of Papaver rhoeas Is Regulated by a Slow-Moving Calcium Wave Propagated by Inositol 1,4,5-Trisphosphate. Plant Cell. 1996 Aug;8(8):1305–1321. doi: 10.1105/tpc.8.8.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibbon B. C., Ren H., Staiger C. J. Characterization of maize (Zea mays) pollen profilin function in vitro and in live cells. Biochem J. 1997 Nov 1;327(Pt 3):909–915. doi: 10.1042/bj3270909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibbon B. C., Zonia L. E., Kovar D. R., Hussey P. J., Staiger C. J. Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell. 1998 Jun;10(6):981–993. doi: 10.1105/tpc.10.6.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Giehl K., Valenta R., Rothkegel M., Ronsiek M., Mannherz H. G., Jockusch B. M. Interaction of plant profilin with mammalian actin. Eur J Biochem. 1994 Dec 1;226(2):681–689. doi: 10.1111/j.1432-1033.1994.tb20096.x. [DOI] [PubMed] [Google Scholar]
  13. Goldschmidt-Clermont P. J., Machesky L. M., Baldassare J. J., Pollard T. D. The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science. 1990 Mar 30;247(4950):1575–1578. doi: 10.1126/science.2157283. [DOI] [PubMed] [Google Scholar]
  14. Hansson A., Skoglund G., Lassing I., Lindberg U., Ingelman-Sundberg M. Protein kinase C-dependent phosphorylation of profilin is specifically stimulated by phosphatidylinositol bisphosphate (PIP2). Biochem Biophys Res Commun. 1988 Jan 29;150(2):526–531. doi: 10.1016/0006-291x(88)90425-1. [DOI] [PubMed] [Google Scholar]
  15. Huang S., McDowell J. M., Weise M. J., Meagher R. B. The Arabidopsis profilin gene family. Evidence for an ancient split between constitutive and pollen-specific profilin genes. Plant Physiol. 1996 May;111(1):115–126. doi: 10.1104/pp.111.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Imamura H., Tanaka K., Hihara T., Umikawa M., Kamei T., Takahashi K., Sasaki T., Takai Y. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 1997 May 15;16(10):2745–2755. doi: 10.1093/emboj/16.10.2745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Janmey P. A. Polyproline affinity method for purification of platelet profilin and modification with pyrene-maleimide. Methods Enzymol. 1991;196:92–99. doi: 10.1016/0076-6879(91)96011-f. [DOI] [PubMed] [Google Scholar]
  18. Karakesisoglou I., Schleicher M., Gibbon B. C., Staiger C. J. Plant profilins rescue the aberrant phenotype of profilin-deficient Dictyostelium cells. Cell Motil Cytoskeleton. 1996;34(1):36–47. doi: 10.1002/(SICI)1097-0169(1996)34:1<36::AID-CM4>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  19. Lassing I., Lindberg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature. 1985 Apr 4;314(6010):472–474. doi: 10.1038/314472a0. [DOI] [PubMed] [Google Scholar]
  20. Lin Y., Wang Y., Zhu J. K., Yang Z. Localization of a Rho GTPase Implies a Role in Tip Growth and Movement of the Generative Cell in Pollen Tubes. Plant Cell. 1996 Feb;8(2):293–303. doi: 10.1105/tpc.8.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lopez I., Anthony R. G., Maciver S. K., Jiang C. J., Khan S., Weeds A. G., Hussey P. J. Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7415–7420. doi: 10.1073/pnas.93.14.7415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lu P. J., Shieh W. R., Rhee S. G., Yin H. L., Chen C. S. Lipid products of phosphoinositide 3-kinase bind human profilin with high affinity. Biochemistry. 1996 Nov 5;35(44):14027–14034. doi: 10.1021/bi961878z. [DOI] [PubMed] [Google Scholar]
  23. Machesky L. M., Atkinson S. J., Ampe C., Vandekerckhove J., Pollard T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol. 1994 Oct;127(1):107–115. doi: 10.1083/jcb.127.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Machesky L. M., Poland T. D. Profilin as a potential mediator of membrane-cytoskeleton communication. Trends Cell Biol. 1993 Nov;3(11):381–385. doi: 10.1016/0962-8924(93)90087-h. [DOI] [PubMed] [Google Scholar]
  25. Moon A., Drubin D. G. The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol Biol Cell. 1995 Nov;6(11):1423–1431. doi: 10.1091/mbc.6.11.1423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pantaloni D., Carlier M. F. How profilin promotes actin filament assembly in the presence of thymosin beta 4. Cell. 1993 Dec 3;75(5):1007–1014. doi: 10.1016/0092-8674(93)90544-z. [DOI] [PubMed] [Google Scholar]
  27. Perelroizen I., Didry D., Christensen H., Chua N. H., Carlier M. F. Role of nucleotide exchange and hydrolysis in the function of profilin in action assembly. J Biol Chem. 1996 May 24;271(21):12302–12309. doi: 10.1074/jbc.271.21.12302. [DOI] [PubMed] [Google Scholar]
  28. Perelroizen I., Marchand J. B., Blanchoin L., Didry D., Carlier M. F. Interaction of profilin with G-actin and poly(L-proline). Biochemistry. 1994 Jul 19;33(28):8472–8478. doi: 10.1021/bi00194a011. [DOI] [PubMed] [Google Scholar]
  29. Petrella E. C., Machesky L. M., Kaiser D. A., Pollard T. D. Structural requirements and thermodynamics of the interaction of proline peptides with profilin. Biochemistry. 1996 Dec 24;35(51):16535–16543. doi: 10.1021/bi961498d. [DOI] [PubMed] [Google Scholar]
  30. Reinhard M., Giehl K., Abel K., Haffner C., Jarchau T., Hoppe V., Jockusch B. M., Walter U. The proline-rich focal adhesion and microfilament protein VASP is a ligand for profilins. EMBO J. 1995 Apr 18;14(8):1583–1589. doi: 10.1002/j.1460-2075.1995.tb07146.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ren H., Gibbon B. C., Ashworth S. L., Sherman D. M., Yuan M., Staiger C. J. Actin Purified from Maize Pollen Functions in Living Plant Cells. Plant Cell. 1997 Aug;9(8):1445–1457. doi: 10.1105/tpc.9.8.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rozycki M., Schutt C. E., Lindberg U. Affinity chromatography-based purification of profilin:actin. Methods Enzymol. 1991;196:100–118. doi: 10.1016/0076-6879(91)96012-g. [DOI] [PubMed] [Google Scholar]
  33. Rudd J. J., Franklin FCH., Lord J. M., Franklin-Tong V. E. Increased Phosphorylation of a 26-kD Pollen Protein Is Induced by the Self-Incompatibility Response in Papaver rhoeas. Plant Cell. 1996 Apr;8(4):713–724. doi: 10.1105/tpc.8.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ruhlandt G., Lange U., Grolig F. Profilins purified from higher plants bind to actin from cardiac muscle and to actin from a green alga. Plant Cell Physiol. 1994 Jul;35(5):849–854. doi: 10.1093/oxfordjournals.pcp.a078668. [DOI] [PubMed] [Google Scholar]
  35. Schägger H., von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987 Nov 1;166(2):368–379. doi: 10.1016/0003-2697(87)90587-2. [DOI] [PubMed] [Google Scholar]
  36. Singh S. S., Chauhan A., Murakami N., Chauhan V. P. Profilin and gelsolin stimulate phosphatidylinositol 3-kinase activity. Biochemistry. 1996 Dec 24;35(51):16544–16549. doi: 10.1021/bi9609634. [DOI] [PubMed] [Google Scholar]
  37. Singh S. S., Chauhan A., Murakami N., Styles J., Elzinga M., Chauhan V. P. Phosphoinositide-dependent in vitro phosphorylation of profilin by protein kinase C. Phospholipid specificity and localization of the phosphorylation site. Recept Signal Transduct. 1996;6(2):77–86. [PubMed] [Google Scholar]
  38. Sohn R. H., Goldschmidt-Clermont P. J. Profilin: at the crossroads of signal transduction and the actin cytoskeleton. Bioessays. 1994 Jul;16(7):465–472. doi: 10.1002/bies.950160705. [DOI] [PubMed] [Google Scholar]
  39. Staiger C. J., Goodbody K. C., Hussey P. J., Valenta R., Drøbak B. K., Lloyd C. W. The profilin multigene family of maize: differential expression of three isoforms. Plant J. 1993 Oct;4(4):631–641. doi: 10.1046/j.1365-313x.1993.04040631.x. [DOI] [PubMed] [Google Scholar]
  40. Staiger C. J., Yuan M., Valenta R., Shaw P. J., Warn R. M., Lloyd C. W. Microinjected profilin affects cytoplasmic streaming in plant cells by rapidly depolymerizing actin microfilaments. Curr Biol. 1994 Mar 1;4(3):215–219. doi: 10.1016/s0960-9822(00)00050-6. [DOI] [PubMed] [Google Scholar]
  41. Sun H. Q., Kwiatkowska K., Yin H. L. Actin monomer binding proteins. Curr Opin Cell Biol. 1995 Feb;7(1):102–110. doi: 10.1016/0955-0674(95)80051-4. [DOI] [PubMed] [Google Scholar]
  42. Tanaka M., Shibata H. Poly(L-proline)-binding proteins from chick embryos are a profilin and a profilactin. Eur J Biochem. 1985 Sep 2;151(2):291–297. doi: 10.1111/j.1432-1033.1985.tb09099.x. [DOI] [PubMed] [Google Scholar]
  43. Taylor Loverine P., Hepler Peter K. POLLEN GERMINATION AND TUBE GROWTH. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):461–491. doi: 10.1146/annurev.arplant.48.1.461. [DOI] [PubMed] [Google Scholar]
  44. Thorn K. S., Christensen H. E., Shigeta R., Huddler D., Shalaby L., Lindberg U., Chua N. H., Schutt C. E. The crystal structure of a major allergen from plants. Structure. 1997 Jan 15;5(1):19–32. doi: 10.1016/s0969-2126(97)00163-9. [DOI] [PubMed] [Google Scholar]
  45. Valenta R., Duchêne M., Pettenburger K., Sillaber C., Valent P., Bettelheim P., Breitenbach M., Rumpold H., Kraft D., Scheiner O. Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science. 1991 Aug 2;253(5019):557–560. doi: 10.1126/science.1857985. [DOI] [PubMed] [Google Scholar]
  46. Valenta R., Ferreira F., Grote M., Swoboda I., Vrtala S., Duchêne M., Deviller P., Meagher R. B., McKinney E., Heberle-Bors E. Identification of profilin as an actin-binding protein in higher plants. J Biol Chem. 1993 Oct 25;268(30):22777–22781. [PubMed] [Google Scholar]
  47. Valster A. H., Pierson E. S., Valenta R., Hepler P. K., Emons AMC. Probing the Plant Actin Cytoskeleton during Cytokinesis and Interphase by Profilin Microinjection. Plant Cell. 1997 Oct;9(10):1815–1824. doi: 10.1105/tpc.9.10.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vidali L., Hepler P. K. Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskeleton. 1997;36(4):323–338. doi: 10.1002/(SICI)1097-0169(1997)36:4<323::AID-CM3>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  49. Watanabe N., Madaule P., Reid T., Ishizaki T., Watanabe G., Kakizuka A., Saito Y., Nakao K., Jockusch B. M., Narumiya S. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 1997 Jun 2;16(11):3044–3056. doi: 10.1093/emboj/16.11.3044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Wilhelmi L. K., Preuss D. Blazing New Trails (Pollen Tube Guidance in Flowering Plants). Plant Physiol. 1997 Feb;113(2):307–312. doi: 10.1104/pp.113.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES