Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Jun;10(6):877–888. doi: 10.1105/tpc.10.6.877

Transposon tagging of the Defective embryo and meristems gene of tomato.

J S Keddie 1, B J Carroll 1, C M Thomas 1, M E Reyes 1, V Klimyuk 1, H Holtan 1, W Gruissem 1, J D Jones 1
PMCID: PMC144044  PMID: 9634577

Abstract

The shoot and root apical meristems (SAMs and RAMs, respectively) of higher plants are mechanistically and structurally similar. This has led previously to the suggestion that the SAM and RAM represent modifications of a fundamentally homologous plan of organization. Despite recent interest in plant development, especially in the areas of meristem regulation, genes specifically required for the function of both the SAM and RAM have not yet been identified. Here, we report on a novel gene, Defective embryo and meristems (Dem), of tomato. This gene is required for the correct organization of shoot apical tissues of developing embryos, SAM development, and correct cell division patterns and meristem maintenance in roots. Dem was cloned using transposon tagging and shown to encode a novel protein of 72 kD with significant homology to YNV2, a protein of unknown function of Saccharomyces cerevisiae. Dem is expressed in root and shoot meristems and organ primordia but not in callus. The expression pattern of Dem mRNA in combination with the dem mutant phenotype suggests that Dem plays an important role within apical meristems.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benfey P. N., Schiefelbein J. W. Getting to the root of plant development: the genetics of Arabidopsis root formation. Trends Genet. 1994 Mar;10(3):84–88. doi: 10.1016/0168-9525(94)90230-5. [DOI] [PubMed] [Google Scholar]
  3. Carroll B. J., Klimyuk V. I., Thomas C. M., Bishop G. J., Harrison K., Scofield S. R., Jones J. D. Germinal transpositions of the maize element Dissociation from T-DNA loci in tomato. Genetics. 1995 Jan;139(1):407–420. doi: 10.1093/genetics/139.1.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark S. E., Williams R. W., Meyerowitz E. M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell. 1997 May 16;89(4):575–585. doi: 10.1016/s0092-8674(00)80239-1. [DOI] [PubMed] [Google Scholar]
  5. Coen E. S., Romero J. M., Doyle S., Elliott R., Murphy G., Carpenter R. floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell. 1990 Dec 21;63(6):1311–1322. doi: 10.1016/0092-8674(90)90426-f. [DOI] [PubMed] [Google Scholar]
  6. Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993 Sep;119(1):71–84. doi: 10.1242/dev.119.1.71. [DOI] [PubMed] [Google Scholar]
  7. Endrizzi K., Moussian B., Haecker A., Levin J. Z., Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 1996 Dec;10(6):967–979. doi: 10.1046/j.1365-313x.1996.10060967.x. [DOI] [PubMed] [Google Scholar]
  8. Hareven D., Gutfinger T., Parnis A., Eshed Y., Lifschitz E. The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell. 1996 Mar 8;84(5):735–744. doi: 10.1016/s0092-8674(00)81051-x. [DOI] [PubMed] [Google Scholar]
  9. Keddie J. S., Carroll B., Jones J. D., Gruissem W. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves. EMBO J. 1996 Aug 15;15(16):4208–4217. [PMC free article] [PubMed] [Google Scholar]
  10. Klimyuk V. I., Carroll B. J., Thomas C. M., Jones J. D. Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J. 1993 Mar;3(3):493–494. doi: 10.1111/j.1365-313x.1993.tb00169.x. [DOI] [PubMed] [Google Scholar]
  11. Liu Cm., Xu Zh., Chua N. H. Auxin Polar Transport Is Essential for the Establishment of Bilateral Symmetry during Early Plant Embryogenesis. Plant Cell. 1993 Jun;5(6):621–630. doi: 10.1105/tpc.5.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lucas W. J., Bouché-Pillon S., Jackson D. P., Nguyen L., Baker L., Ding B., Hake S. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science. 1995 Dec 22;270(5244):1980–1983. doi: 10.1126/science.270.5244.1980. [DOI] [PubMed] [Google Scholar]
  13. Meyerowitz E. M. Genetic control of cell division patterns in developing plants. Cell. 1997 Feb 7;88(3):299–308. doi: 10.1016/s0092-8674(00)81868-1. [DOI] [PubMed] [Google Scholar]
  14. Okada K., Ueda J., Komaki M. K., Bell C. J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991 Jul;3(7):677–684. doi: 10.1105/tpc.3.7.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saedler H., Nevers P. Transposition in plants: a molecular model. EMBO J. 1985 Mar;4(3):585–590. doi: 10.1002/j.1460-2075.1985.tb03670.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith L. G., Greene B., Veit B., Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development. 1992 Sep;116(1):21–30. doi: 10.1242/dev.116.1.21. [DOI] [PubMed] [Google Scholar]
  17. Thomas C. M., Jones D. A., English J. J., Carroll B. J., Bennetzen J. L., Harrison K., Burbidge A., Bishop G. J., Jones J. D. Analysis of the chromosomal distribution of transposon-carrying T-DNAs in tomato using the inverse polymerase chain reaction. Mol Gen Genet. 1994 Mar;242(5):573–585. doi: 10.1007/BF00285281. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES