Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Jul;10(7):1095–1105. doi: 10.1105/tpc.10.7.1095

A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize.

G Hu 1, N Yalpani 1, S P Briggs 1, G S Johal 1
PMCID: PMC144048  PMID: 9668130

Abstract

The maize lesion mimic gene Les22 is defined by dominant mutations and characterized by the production of minute necrotic spots on leaves in a developmentally specified and light-dependent manner. Phenotypically, Les22 lesions resemble those that are triggered during a hypersensitive disease resistance response of plants to pathogens. We have cloned Les22 by using a Mutator-tagging technique. It encodes uroporphyrinogen decarboxylase (UROD), a key enzyme in the biosynthetic pathway of chlorophyll and heme in plants. Urod mutations in humans are also dominant and cause the metabolic disorder porphyria, which manifests itself as light-induced skin morbidity resulting from an excessive accumulation of photoexcitable uroporphyrin. The phenotypic and genetic similarities between porphyria and Les22 along with our observation that Les22 is also associated with an accumulation of uroporphyrin revealed what appears to be a case of natural porphyria in plants.

Full Text

The Full Text of this article is available as a PDF (304.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. D., Prasad T. K., Stewart C. R. Changes in Isozyme Profiles of Catalase, Peroxidase, and Glutathione Reductase during Acclimation to Chilling in Mesocotyls of Maize Seedlings. Plant Physiol. 1995 Dec;109(4):1247–1257. doi: 10.1104/pp.109.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmair A., Becker F., Masterson R. V., Schell J. Perturbation of the ubiquitin system causes leaf curling, vascular tissue alterations and necrotic lesions in a higher plant. EMBO J. 1990 Dec;9(13):4543–4549. doi: 10.1002/j.1460-2075.1990.tb07906.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barkan A., Martienssen R. A. Inactivation of maize transposon Mu suppresses a mutant phenotype by activating an outward-reading promoter near the end of Mu1. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3502–3506. doi: 10.1073/pnas.88.8.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birchler J. A. Dosage analysis of maize endosperm development. Annu Rev Genet. 1993;27:181–204. doi: 10.1146/annurev.ge.27.120193.001145. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Büschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A., van Daelen R., van der Lee T., Diergaarde P., Groenendijk J. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 1997 Mar 7;88(5):695–705. doi: 10.1016/s0092-8674(00)81912-1. [DOI] [PubMed] [Google Scholar]
  7. Dangl J. L., Dietrich R. A., Richberg M. H. Death Don't Have No Mercy: Cell Death Programs in Plant-Microbe Interactions. Plant Cell. 1996 Oct;8(10):1793–1807. doi: 10.1105/tpc.8.10.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A., Dangl J. L. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. doi: 10.1016/0092-8674(94)90218-6. [DOI] [PubMed] [Google Scholar]
  9. Dietrich R. A., Richberg M. H., Schmidt R., Dean C., Dangl J. L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell. 1997 Mar 7;88(5):685–694. doi: 10.1016/s0092-8674(00)81911-x. [DOI] [PubMed] [Google Scholar]
  10. Elder G. H., Roberts A. G. Uroporphyrinogen decarboxylase. J Bioenerg Biomembr. 1995 Apr;27(2):207–214. doi: 10.1007/BF02110035. [DOI] [PubMed] [Google Scholar]
  11. Elkind Y., Edwards R., Mavandad M., Hedrick S. A., Ribak O., Dixon R. A., Lamb C. J. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9057–9061. doi: 10.1073/pnas.87.22.9057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fijan S., Hönigsmann H., Ortel B. Photodynamic therapy of epithelial skin tumours using delta-aminolaevulinic acid and desferrioxamine. Br J Dermatol. 1995 Aug;133(2):282–288. doi: 10.1111/j.1365-2133.1995.tb02630.x. [DOI] [PubMed] [Google Scholar]
  13. Gardiner J. M., Coe E. H., Melia-Hancock S., Hoisington D. A., Chao S. Development of a core RFLP map in maize using an immortalized F2 population. Genetics. 1993 Jul;134(3):917–930. doi: 10.1093/genetics/134.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gray J., Close P. S., Briggs S. P., Johal G. S. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell. 1997 Apr 4;89(1):25–31. doi: 10.1016/s0092-8674(00)80179-8. [DOI] [PubMed] [Google Scholar]
  15. Greenberg J. T., Ausubel F. M. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 1993 Aug;4(2):327–341. doi: 10.1046/j.1365-313x.1993.04020327.x. [DOI] [PubMed] [Google Scholar]
  16. Greenberg J. T., Guo A., Klessig D. F., Ausubel F. M. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell. 1994 May 20;77(4):551–563. doi: 10.1016/0092-8674(94)90217-8. [DOI] [PubMed] [Google Scholar]
  17. Greenberg J. T. Programmed cell death: a way of life for plants. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12094–12097. doi: 10.1073/pnas.93.22.12094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Greenberg Jean T. PROGRAMMED CELL DEATH IN PLANT-PATHOGEN INTERACTIONS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):525–545. doi: 10.1146/annurev.arplant.48.1.525. [DOI] [PubMed] [Google Scholar]
  19. Hammond-Kosack K. E., Jones J. D. Resistance gene-dependent plant defense responses. Plant Cell. 1996 Oct;8(10):1773–1791. doi: 10.1105/tpc.8.10.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Han C. D., Coe E. H., Jr, Martienssen R. A. Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J. 1992 Nov;11(11):4037–4046. doi: 10.1002/j.1460-2075.1992.tb05497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. He Z. H., Li J., Sundqvist C., Timko M. P. Leaf Developmental Age Controls Expression of Genes Encoding Enzymes of Chlorophyll and Heme Biosynthesis in Pea (Pisum sativum L.). Plant Physiol. 1994 Oct;106(2):537–546. doi: 10.1104/pp.106.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hodgkin J. Fluxes, doses and poisons: molecular perspectives on dominance. Trends Genet. 1993 Jan;9(1):1–2. doi: 10.1016/0168-9525(93)90050-R. [DOI] [PubMed] [Google Scholar]
  23. Hoisington D. A., Neuffer M. G., Walbot V. Disease lesion mimics in maize. I. Effect of genetic background, temperature, developmental age, and wounding on necrotic spot formation with Les1. Dev Biol. 1982 Oct;93(2):381–388. doi: 10.1016/0012-1606(82)90125-7. [DOI] [PubMed] [Google Scholar]
  24. Hu G., Richter T. E., Hulbert S. H., Pryor T. Disease Lesion Mimicry Caused by Mutations in the Rust Resistance Gene rp1. Plant Cell. 1996 Aug;8(8):1367–1376. doi: 10.1105/tpc.8.8.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hulbert S. H., Bennetzen J. L. Recombination at the Rp1 locus of maize. Mol Gen Genet. 1991 May;226(3):377–382. doi: 10.1007/BF00260649. [DOI] [PubMed] [Google Scholar]
  26. Jabs T., Dietrich R. A., Dangl J. L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science. 1996 Sep 27;273(5283):1853–1856. doi: 10.1126/science.273.5283.1853. [DOI] [PubMed] [Google Scholar]
  27. Johal G. S., Briggs S. P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science. 1992 Nov 6;258(5084):985–987. doi: 10.1126/science.1359642. [DOI] [PubMed] [Google Scholar]
  28. Kruse E., Mock H. P., Grimm B. Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J. 1995 Aug 1;14(15):3712–3720. doi: 10.1002/j.1460-2075.1995.tb00041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Labbe-Bois R., Rytka J., Litwinska J., Bilinski T. Analysis of heme biosynthesis in catalase and cytochrome deficient yeast mutants. Mol Gen Genet. 1977 Nov 14;156(2):177–183. doi: 10.1007/BF00283490. [DOI] [PubMed] [Google Scholar]
  30. Lamb Chris, Dixon Richard A. THE OXIDATIVE BURST IN PLANT DISEASE RESISTANCE. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):251–275. doi: 10.1146/annurev.arplant.48.1.251. [DOI] [PubMed] [Google Scholar]
  31. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  32. Martienssen R., Barkan A., Taylor W. C., Freeling M. Somatically heritable switches in the DNA modification of Mu transposable elements monitored with a suppressible mutant in maize. Genes Dev. 1990 Mar;4(3):331–343. doi: 10.1101/gad.4.3.331. [DOI] [PubMed] [Google Scholar]
  33. Martienssen R., Baron A. Coordinate suppression of mutations caused by Robertson's mutator transposons in maize. Genetics. 1994 Mar;136(3):1157–1170. doi: 10.1093/genetics/136.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mock H. P., Grimm B. Reduction of Uroporphyrinogen Decarboxylase by Antisense RNA Expression Affects Activities of Other Enzymes Involved in Tetrapyrrole Biosynthesis and Leads to Light-Dependent Necrosis. Plant Physiol. 1997 Apr;113(4):1101–1112. doi: 10.1104/pp.113.4.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mock H. P., Trainotti L., Kruse E., Grimm B. Isolation, sequencing and expression of cDNA sequences encoding uroporphyrinogen decarboxylase from tobacco and barley. Plant Mol Biol. 1995 May;28(2):245–256. doi: 10.1007/BF00020244. [DOI] [PubMed] [Google Scholar]
  36. Moore M. R. Biochemistry of porphyria. Int J Biochem. 1993 Oct;25(10):1353–1368. doi: 10.1016/0020-711x(93)90683-6. [DOI] [PubMed] [Google Scholar]
  37. Morel J. B., Dangl J. L. The hypersensitive response and the induction of cell death in plants. Cell Death Differ. 1997 Dec;4(8):671–683. doi: 10.1038/sj.cdd.4400309. [DOI] [PubMed] [Google Scholar]
  38. Reinbothe S., Reinbothe C., Apel K., Lebedev N. Evolution of chlorophyll biosynthesis--the challenge to survive photooxidation. Cell. 1996 Sep 6;86(5):703–705. doi: 10.1016/s0092-8674(00)80144-0. [DOI] [PubMed] [Google Scholar]
  39. Reinbothe S., Reinbothe C. Regulation of Chlorophyll Biosynthesis in Angiosperms. Plant Physiol. 1996 May;111(1):1–7. doi: 10.1104/pp.111.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Romeo G. Enzymatic defects of hereditary porphyrias: an explanation of dominance at the molecular level. Hum Genet. 1977 Dec 23;39(3):261–276. doi: 10.1007/BF00295419. [DOI] [PubMed] [Google Scholar]
  41. Roméo P. H., Raich N., Dubart A., Beaupain D., Pryor M., Kushner J., Cohen-Solal M., Goossens M. Molecular cloning and nucleotide sequence of a complete human uroporphyrinogen decarboxylase cDNA. J Biol Chem. 1986 Jul 25;261(21):9825–9831. [PubMed] [Google Scholar]
  42. Straka J. G., Rank J. M., Bloomer J. R. Porphyria and porphyrin metabolism. Annu Rev Med. 1990;41:457–469. doi: 10.1146/annurev.me.41.020190.002325. [DOI] [PubMed] [Google Scholar]
  43. Von Wettstein D., Gough S., Kannangara C. G. Chlorophyll Biosynthesis. Plant Cell. 1995 Jul;7(7):1039–1057. doi: 10.1105/tpc.7.7.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wolter M., Hollricher K., Salamini F., Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet. 1993 May;239(1-2):122–128. doi: 10.1007/BF00281610. [DOI] [PubMed] [Google Scholar]
  45. Zacharopoulos V. R., Perotti M. E., Phillips D. M. A role for cell migration in the sexual transmission of HIV-1? Curr Biol. 1997 Jul 1;7(7):534–537. doi: 10.1016/s0960-9822(06)00225-9. [DOI] [PubMed] [Google Scholar]
  46. Zoładek T., Nguyen B. N., Rytka J. Saccharomyces cerevisiae mutants defective in heme biosynthesis as a tool for studying the mechanism of phototoxicity of porphyrins. Photochem Photobiol. 1996 Dec;64(6):957–962. doi: 10.1111/j.1751-1097.1996.tb01861.x. [DOI] [PubMed] [Google Scholar]
  47. de Verneuil H., Grandchamp B., Beaumont C., Picat C., Nordmann Y. Uroporphyrinogen decarboxylase structural mutant (Gly281----Glu) in a case of porphyria. Science. 1986 Nov 7;234(4777):732–734. doi: 10.1126/science.3775362. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES