Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Jul;10(7):1207–1216. doi: 10.1105/tpc.10.7.1207

A high-conductance solute channel in the chloroplastic outer envelope from Pea.

K Pohlmeyer 1, J Soll 1, R Grimm 1, K Hill 1, R Wagner 1
PMCID: PMC144050  PMID: 9668138

Abstract

The pea chloroplastic outer envelope protein OEP24 can function as a general solute channel. OEP24 is present in chloroplasts, etioplasts, and non-green root plastids. The heterologously expressed protein forms a voltage-dependent, high-conductance (Lambda = 1.3 nS in 1 M KCl), and slightly cation-selective ion channel in reconstituted proteoliposomes. The highest open probability (P open approximately 0. 8) is at 0 mV, which is consistent with the absence of a transmembrane potential across the chloroplastic outer envelope. The OEP24 channels allow the flux of triosephosphate, dicarboxylic acids, positively or negatively charged amino acids, sugars, ATP, and Pi. Structure prediction algorithms and circular dichroism spectra indicate that OEP24 contains seven amphiphilic beta strands. The primary structure of OEP24 shows no homologies to mitochondrial or bacterial porins on a primary sequence basis, and OEP24 is functionally not inhibited by cadaverine, which is a potent inhibitor of bacterial porins. We conclude that OEP24 represents a new type of solute channel in the plastidic outer envelope.

Full Text

The Full Text of this article is available as a PDF (393.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. J., Sanders D. Calcineurin, a Type 2B Protein Phosphatase, Modulates the Ca2+-Permeable Slow Vacuolar Ion Channel of Stomatal Guard Cells. Plant Cell. 1995 Sep;7(9):1473–1483. doi: 10.1105/tpc.7.9.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benz R. Permeation of hydrophilic solutes through mitochondrial outer membranes: review on mitochondrial porins. Biochim Biophys Acta. 1994 Jun 29;1197(2):167–196. doi: 10.1016/0304-4157(94)90004-3. [DOI] [PubMed] [Google Scholar]
  3. Braun H. P., Emmermann M., Kruft V., Schmitz U. K. Cytochrome c1 from potato: a protein with a presequence for targeting to the mitochondrial intermembrane space. Mol Gen Genet. 1992 Jan;231(2):217–225. doi: 10.1007/BF00279794. [DOI] [PubMed] [Google Scholar]
  4. Claros M. G., von Heijne G. TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci. 1994 Dec;10(6):685–686. doi: 10.1093/bioinformatics/10.6.685. [DOI] [PubMed] [Google Scholar]
  5. Cleveland D. W. Peptide mapping in one dimension by limited proteolysis of sodium dodecyl sulfate-solubilized proteins. Methods Enzymol. 1983;96:222–229. doi: 10.1016/s0076-6879(83)96020-2. [DOI] [PubMed] [Google Scholar]
  6. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
  7. Crawford N. M. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995 Jul;7(7):859–868. doi: 10.1105/tpc.7.7.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Pinto V., Prezioso G., Thinnes F., Link T. A., Palmieri F. Peptide-specific antibodies and proteases as probes of the transmembrane topology of the bovine heart mitochondrial porin. Biochemistry. 1991 Oct 22;30(42):10191–10200. doi: 10.1021/bi00106a017. [DOI] [PubMed] [Google Scholar]
  9. Dela Vega A. L., Delcour A. H. Polyamines decrease Escherichia coli outer membrane permeability. J Bacteriol. 1996 Jul;178(13):3715–3721. doi: 10.1128/jb.178.13.3715-3721.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Douce R., Joyard J. Biochemistry and function of the plastid envelope. Annu Rev Cell Biol. 1990;6:173–216. doi: 10.1146/annurev.cb.06.110190.001133. [DOI] [PubMed] [Google Scholar]
  11. Fischer K., Kammerer B., Gutensohn M., Arbinger B., Weber A., Häusler R. E., Flügge U. I. A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter. Plant Cell. 1997 Mar;9(3):453–462. doi: 10.1105/tpc.9.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fischer K., Weber A., Brink S., Arbinger B., Schünemann D., Borchert S., Heldt H. W., Popp B., Benz R., Link T. A. Porins from plants. Molecular cloning and functional characterization of two new members of the porin family. J Biol Chem. 1994 Oct 14;269(41):25754–25760. [PubMed] [Google Scholar]
  13. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heiber T., Steinkamp T., Hinnah S., Schwarz M., Flügge U. I., Weber A., Wagner R. Ion channels in the chloroplast envelope membrane. Biochemistry. 1995 Dec 12;34(49):15906–15917. doi: 10.1021/bi00049a005. [DOI] [PubMed] [Google Scholar]
  15. Heins L., Mentzel H., Schmid A., Benz R., Schmitz U. K. Biochemical, molecular, and functional characterization of porin isoforms from potato mitochondria. J Biol Chem. 1994 Oct 21;269(42):26402–26410. [PubMed] [Google Scholar]
  16. Hinnah S. C., Hill K., Wagner R., Schlicher T., Soll J. Reconstitution of a chloroplast protein import channel. EMBO J. 1997 Dec 15;16(24):7351–7360. doi: 10.1093/emboj/16.24.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  18. Lee A. C., Xu X., Colombini M. The role of pyridine dinucleotides in regulating the permeability of the mitochondrial outer membrane. J Biol Chem. 1996 Oct 25;271(43):26724–26731. doi: 10.1074/jbc.271.43.26724. [DOI] [PubMed] [Google Scholar]
  19. Liu M. Y., Torgrimson A., Colombini M. Characterization and partial purification of the VDAC-channel-modulating protein from calf liver mitochondria. Biochim Biophys Acta. 1994 Apr 28;1185(2):203–212. doi: 10.1016/0005-2728(94)90211-9. [DOI] [PubMed] [Google Scholar]
  20. MUELLER P., RUDIN D. O., TIEN H. T., WESCOTT W. C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 1962 Jun 9;194:979–980. doi: 10.1038/194979a0. [DOI] [PubMed] [Google Scholar]
  21. Miller C., Arvan P., Telford J. N., Racker E. Ca++-induced fusion of proteoliposomes: dependence on transmembrane osmotic gradient. J Membr Biol. 1976;30(3):271–282. doi: 10.1007/BF01869672. [DOI] [PubMed] [Google Scholar]
  22. Miller C., White M. M. Dimeric structure of single chloride channels from Torpedo electroplax. Proc Natl Acad Sci U S A. 1984 May;81(9):2772–2775. doi: 10.1073/pnas.81.9.2772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Neuhaus H. E., Thom E., Möhlmann T., Steup M., Kampfenkel K. Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L. Plant J. 1997 Jan;11(1):73–82. doi: 10.1046/j.1365-313x.1997.11010073.x. [DOI] [PubMed] [Google Scholar]
  24. Nikaido H. Porins and specific diffusion channels in bacterial outer membranes. J Biol Chem. 1994 Feb 11;269(6):3905–3908. [PubMed] [Google Scholar]
  25. Pohlmeyer K., Soll J., Steinkamp T., Hinnah S., Wagner R. Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9504–9509. doi: 10.1073/pnas.94.17.9504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pottosin I. I. One of the chloroplast envelope ion channels is probably related to the mitochondrial VDAC. FEBS Lett. 1993 Sep 13;330(2):211–214. doi: 10.1016/0014-5793(93)80275-y. [DOI] [PubMed] [Google Scholar]
  27. Pottosin I. I. Single channel recording in the chloroplast envelope. FEBS Lett. 1992 Aug 10;308(1):87–90. doi: 10.1016/0014-5793(92)81057-s. [DOI] [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sreerama N., Woody R. W. Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods. J Mol Biol. 1994 Sep 30;242(4):497–507. doi: 10.1006/jmbi.1994.1597. [DOI] [PubMed] [Google Scholar]
  30. Viera L. I., Senisterra G. A., Disalvo E. A. Changes in the optical properties of liposome dispersions in relation to the interlamellar distance and solute interaction. Chem Phys Lipids. 1996 Jun 17;81(1):45–54. doi: 10.1016/0009-3084(96)02532-7. [DOI] [PubMed] [Google Scholar]
  31. Waegemann K., Soll J. Characterization and isolation of the chloroplast protein import machinery. Methods Cell Biol. 1995;50:255–267. doi: 10.1016/s0091-679x(08)61035-3. [DOI] [PubMed] [Google Scholar]
  32. Weber A., Menzlaff E., Arbinger B., Gutensohn M., Eckerskorn C., Flügge U. I. The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry. 1995 Feb 28;34(8):2621–2627. doi: 10.1021/bi00008a028. [DOI] [PubMed] [Google Scholar]
  33. Woodbury D. J., Miller C. Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers. Biophys J. 1990 Oct;58(4):833–839. doi: 10.1016/S0006-3495(90)82429-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES