Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Jul;10(7):1217–1228. doi: 10.1105/tpc.10.7.1217

A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated.

R Sarria 1, A Lyznik 1, C E Vallejos 1, S A Mackenzie 1
PMCID: PMC144055  PMID: 9668139

Abstract

Cytoplasmic male sterility in the common bean plant is associated with a dominant mitochondrial mutation designated pvs-or f 239 (for Phaseolus vulgaris sterility sequence open reading frame 239). The sequence is transcribed in both vegetative and reproductive tissues, but the translation product, ORF239, is present only in reproductive tissues. We present evidence to support a model of post-translational regulation of ORF239 expression based on the following observations. In organello translation experiments using purified mitochondria from young seedlings demonstrated accumulation of ORF239 only when a protease inhibitor was included. Proteolytic activity against ORF239 was observed in mitochondrial extracts fractionating with the mitochondrial inner membrane. The DNA sequence encoding a serine-type protease, similar to the lon protease gene of Escherichia coli, was cloned from the Arabidopsis genome. The expression product of this sequence demonstrated proteolytic activity against ORF239 in vitro, with features resembling the activity detected in mitochondrial inner membrane preparations. Antibodies generated against the overexpressed Lon homolog reduced proteolytic activity against ORF239 when added to mitochondrial extracts. Our data suggest that ORF239 was undetected in vegetative tissue due to rapid turnover by at least one mitochondrial protease that acts against ORF239 post-translationally.

Full Text

The Full Text of this article is available as a PDF (209.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abad A. R., Mehrtens B. J., Mackenzie S. A. Specific expression in reproductive tissues and fate of a mitochondrial sterility-associated protein in cytoplasmic male-sterile bean. Plant Cell. 1995 Mar;7(3):271–285. doi: 10.1105/tpc.7.3.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barakat S., Pearce D. A., Sherman F., Rapp W. D. Maize contains a Lon protease gene that can partially complement a yeast pim1-deletion mutant. Plant Mol Biol. 1998 May;37(1):141–154. doi: 10.1023/a:1005912831051. [DOI] [PubMed] [Google Scholar]
  3. Burr B., Burr F. A., Thompson K. H., Albertson M. C., Stuber C. W. Gene mapping with recombinant inbreds in maize. Genetics. 1988 Mar;118(3):519–526. doi: 10.1093/genetics/118.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chase C. D. Expression of CMS-unique and flanking mitochondrial DNA sequences in Phaseolus vulgaris L. Curr Genet. 1994 Mar;25(3):245–251. doi: 10.1007/BF00357169. [DOI] [PubMed] [Google Scholar]
  5. Chung C. H., Goldberg A. L. The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4931–4935. doi: 10.1073/pnas.78.8.4931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dewey R. E., Timothy D. H., Levings C. S. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5374–5378. doi: 10.1073/pnas.84.15.5374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forde B. G., Oliver R. J., Leaver C. J. Variation in mitochondrial translation products associated with male-sterile cytoplasms in maize. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3841–3845. doi: 10.1073/pnas.75.8.3841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goff S. A., Goldberg A. L. An increased content of protease La, the lon gene product, increases protein degradation and blocks growth in Escherichia coli. J Biol Chem. 1987 Apr 5;262(10):4508–4515. [PubMed] [Google Scholar]
  9. Goldberg A. L. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem. 1992 Jan 15;203(1-2):9–23. doi: 10.1111/j.1432-1033.1992.tb19822.x. [DOI] [PubMed] [Google Scholar]
  10. Gottesman S. Genetics of proteolysis in Escherichia coli*. Annu Rev Genet. 1989;23:163–198. doi: 10.1146/annurev.ge.23.120189.001115. [DOI] [PubMed] [Google Scholar]
  11. Gottesman S., Wickner S., Maurizi M. R. Protein quality control: triage by chaperones and proteases. Genes Dev. 1997 Apr 1;11(7):815–823. doi: 10.1101/gad.11.7.815. [DOI] [PubMed] [Google Scholar]
  12. Hanson M. R. Plant mitochondrial mutations and male sterility. Annu Rev Genet. 1991;25:461–486. doi: 10.1146/annurev.ge.25.120191.002333. [DOI] [PubMed] [Google Scholar]
  13. He S., Abad A. R., Gelvin S. B., Mackenzie S. A. A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11763–11768. doi: 10.1073/pnas.93.21.11763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hiesel R., Combettes B., Brennicke A. Evidence for RNA editing in mitochondria of all major groups of land plants except the Bryophyta. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):629–633. doi: 10.1073/pnas.91.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johns C., Lu M., Lyznik A., Mackenzie S. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants. Plant Cell. 1992 Apr;4(4):435–449. doi: 10.1105/tpc.4.4.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knorpp C., Szigyarto C., Glaser E. Evidence for a novel ATP-dependent membrane-associated protease in spinach leaf mitochondria. Biochem J. 1995 Sep 1;310(Pt 2):527–531. doi: 10.1042/bj3100527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kozak M. Bifunctional messenger RNAs in eukaryotes. Cell. 1986 Nov 21;47(4):481–483. doi: 10.1016/0092-8674(86)90609-4. [DOI] [PubMed] [Google Scholar]
  18. Krishnasamy S., Makaroff C. A. Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish. Plant Mol Biol. 1994 Nov;26(3):935–946. doi: 10.1007/BF00028860. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  21. Li X. Q., Zhang M., Brown G. G. Cell-Specific Expression of Mitochondrial Transcripts in Maize Seedlings. Plant Cell. 1996 Nov;8(11):1961–1975. doi: 10.1105/tpc.8.11.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lu B., Wilson R. K., Phreaner C. G., Mulligan R. M., Hanson M. R. Protein polymorphism generated by differential RNA editing of a plant mitochondrial rps12 gene. Mol Cell Biol. 1996 Apr;16(4):1543–1549. doi: 10.1128/mcb.16.4.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mackenzie S. A. Identification of a sterility-inducing cytoplasm in a fertile accession line of Phaseolus vulgaris L. Genetics. 1991 Feb;127(2):411–416. doi: 10.1093/genetics/127.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marzuki S., Hibbs A. R. Are all mitochondrial translation products synthesized on membrane-bound ribosomes? Biochim Biophys Acta. 1986 Mar 26;866(2-3):120–124. doi: 10.1016/0167-4781(86)90108-9. [DOI] [PubMed] [Google Scholar]
  25. McMullin T. W., Fox T. D. COX3 mRNA-specific translational activator proteins are associated with the inner mitochondrial membrane in Saccharomyces cerevisiae. J Biol Chem. 1993 Jun 5;268(16):11737–11741. [PubMed] [Google Scholar]
  26. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nivison H. T., Hanson M. R. Identification of a mitochondrial protein associated with cytoplasmic male sterility in petunia. Plant Cell. 1989 Nov;1(11):1121–1130. doi: 10.1105/tpc.1.11.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rapp W. D., Lupold D. S., Mack S., Stern D. B. Architecture of the maize mitochondrial atp1 promoter as determined by linker-scanning and point mutagenesis. Mol Cell Biol. 1993 Dec;13(12):7232–7238. doi: 10.1128/mcb.13.12.7232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rapp W. D., Stern D. B. A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene. EMBO J. 1992 Mar;11(3):1065–1073. doi: 10.1002/j.1460-2075.1992.tb05145.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rep M., Grivell L. A. The role of protein degradation in mitochondrial function and biogenesis. Curr Genet. 1996 Nov;30(5):367–380. doi: 10.1007/s002940050145. [DOI] [PubMed] [Google Scholar]
  31. Sonezaki S., Kondo A., Oba T., Ishii Y., Kato Y., Nakayama H. Overproduction and purification of Lon protease from Escherichia coli using a maltose-binding protein fusion system. Appl Microbiol Biotechnol. 1994 Nov;42(2-3):313–318. doi: 10.1007/BF00902735. [DOI] [PubMed] [Google Scholar]
  32. Spithill T. W., Trembath M. K., Lukins H. B., Linnane A. W. Mutations of the mitochondrial DNA of Saccharomyces cerevisiae which affect the interaction between mitochondrial ribosomes and the inner mitochondrial membrane. Mol Gen Genet. 1978 Aug 17;164(2):155–162. doi: 10.1007/BF00267380. [DOI] [PubMed] [Google Scholar]
  33. Suzuki C. K., Suda K., Wang N., Schatz G. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science. 1994 Apr 8;264(5156):273–276. doi: 10.1126/science.8146662. [DOI] [PubMed] [Google Scholar]
  34. Vallejos C. E., Sakiyama N. S., Chase C. D. A molecular marker-based linkage map of Phaseolus vulgaris L. Genetics. 1992 Jul;131(3):733–740. doi: 10.1093/genetics/131.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Van Dyck L., Pearce D. A., Sherman F. PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J Biol Chem. 1994 Jan 7;269(1):238–242. [PubMed] [Google Scholar]
  36. Van Melderen L., Thi M. H., Lecchi P., Gottesman S., Couturier M., Maurizi M. R. ATP-dependent degradation of CcdA by Lon protease. Effects of secondary structure and heterologous subunit interactions. J Biol Chem. 1996 Nov 1;271(44):27730–27738. doi: 10.1074/jbc.271.44.27730. [DOI] [PubMed] [Google Scholar]
  37. Wagner I., Arlt H., van Dyck L., Langer T., Neupert W. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J. 1994 Nov 1;13(21):5135–5145. doi: 10.1002/j.1460-2075.1994.tb06843.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wang N., Gottesman S., Willingham M. C., Gottesman M. M., Maurizi M. R. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11247–11251. doi: 10.1073/pnas.90.23.11247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wang N., Maurizi M. R., Emmert-Buck L., Gottesman M. M. Synthesis, processing, and localization of human Lon protease. J Biol Chem. 1994 Nov 18;269(46):29308–29313. [PubMed] [Google Scholar]
  40. Zehnbauer B. A., Markovitz A. Cloning of gene lon (capR) of Escherichia coli K-12 and identification of polypeptides specified by the cloned deoxyribonucleic acid fragment. J Bacteriol. 1980 Aug;143(2):852–863. doi: 10.1128/jb.143.2.852-863.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES