Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Aug;10(8):1267–1276. doi: 10.1105/tpc.10.8.1267

Ca2+, annexins, and GTP modulate exocytosis from maize root cap protoplasts

AD Carroll 1, C Moyen 1, Van Kesteren P 1, F Tooke 1, NH Battey 1, C Brownlee 1
PMCID: PMC144062  PMID: 9707528

Abstract

Protoplasts isolated from root cap cells of maize were shown to secrete fucose-rich polysaccharides and were used in a patch-clamp study to monitor changes in whole-cell capacitance. Ca2+ was required for exocytosis, which was measured as an increase in cell capacitance during intracellular dialysis with Ca2+ buffers via the patch pipette. Exocytosis was stimulated significantly by small increases above normal resting [Ca2+]. In the absence of Ca2+, protoplasts decreased in size. In situ hybridization showed significant expression of the maize annexin p35 in root cap cells, differ-entiating vascular tissue, and elongating cells. Dialysis of protoplasts with maize annexins stimulated exocytosis at physiological [Ca2+], and this could be blocked by dialysis with antibodies specific to maize annexins. Dialysis with milli-molar concentrations of GTP strongly inhibited exocytosis, causing protoplasts to decrease in size. GTPgammaS and GDPbetaS both caused only a slight inhibition of exocytosis at physiological Ca2+. Protoplasts were shown to internalize plasma membrane actively. The results are discussed in relation to the regulation of exocytosis in what is usually considered to be a constitutively secreting system; they provide direct evidence for a role of annexins in exocytosis in plant cells.

Full Text

The Full Text of this article is available as a PDF (316.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battey N. H., James N. C., Greenland A. J. cDNA isolation and gene expression of the maize annexins p33 and p35. Plant Physiol. 1996 Nov;112(3):1391–1396. doi: 10.1104/pp.112.3.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackbourn H. D., Barker P. J., Huskisson N. S., Battey N. H. Properties and partial protein sequence of plant annexins. Plant Physiol. 1992 Jul;99(3):864–871. doi: 10.1104/pp.99.3.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradley D., Carpenter R., Sommer H., Hartley N., Coen E. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell. 1993 Jan 15;72(1):85–95. doi: 10.1016/0092-8674(93)90052-r. [DOI] [PubMed] [Google Scholar]
  4. Burgess T. L., Kelly R. B. Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 1987;3:243–293. doi: 10.1146/annurev.cb.03.110187.001331. [DOI] [PubMed] [Google Scholar]
  5. Burgoyne R. D., Handel S. E. Activation of exocytosis by GTP analogues in adrenal chromaffin cells revealed by patch-clamp capacitance measurement. FEBS Lett. 1994 May 16;344(2-3):139–142. doi: 10.1016/0014-5793(94)00361-0. [DOI] [PubMed] [Google Scholar]
  6. Burgoyne R. D., Morgan A. Regulated exocytosis. Biochem J. 1993 Jul 15;293(Pt 2):305–316. doi: 10.1042/bj2930305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark G. B., Roux S. J. Annexins of plant cells. Plant Physiol. 1995 Dec;109(4):1133–1139. doi: 10.1104/pp.109.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coorssen J. R., Schmitt H., Almers W. Ca2+ triggers massive exocytosis in Chinese hamster ovary cells. EMBO J. 1996 Aug 1;15(15):3787–3791. [PMC free article] [PubMed] [Google Scholar]
  9. Creutz C. E. The annexins and exocytosis. Science. 1992 Nov 6;258(5084):924–931. doi: 10.1126/science.1439804. [DOI] [PubMed] [Google Scholar]
  10. Donnelly S. R., Moss S. E. Annexins in the secretory pathway. Cell Mol Life Sci. 1997 Jun;53(6):533–538. doi: 10.1007/s000180050068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Díaz-Muñoz M., Hamilton S. L., Kaetzel M. A., Hazarika P., Dedman J. R. Modulation of Ca2+ release channel activity from sarcoplasmic reticulum by annexin VI (67-kDa calcimedin). J Biol Chem. 1990 Sep 15;265(26):15894–15899. [PubMed] [Google Scholar]
  12. Fidler N., Fernandez J. M. Phase tracking: an improved phase detection technique for cell membrane capacitance measurements. Biophys J. 1989 Dec;56(6):1153–1162. doi: 10.1016/S0006-3495(89)82762-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fiedler K., Lafont F., Parton R. G., Simons K. Annexin XIIIb: a novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane. J Cell Biol. 1995 Mar;128(6):1043–1053. doi: 10.1083/jcb.128.6.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fischer von Mollard G., Stahl B., Li C., Südhof T. C., Jahn R. Rab proteins in regulated exocytosis. Trends Biochem Sci. 1994 Apr;19(4):164–168. doi: 10.1016/0968-0004(94)90278-x. [DOI] [PubMed] [Google Scholar]
  15. Gilroy S., Bethke P. C., Jones R. L. Calcium homeostasis in plants. J Cell Sci. 1993 Oct;106(Pt 2):453–461. doi: 10.1242/jcs.106.2.453. [DOI] [PubMed] [Google Scholar]
  16. Goda Y., Südhof T. C. Calcium regulation of neurotransmitter release: reliably unreliable? Curr Opin Cell Biol. 1997 Aug;9(4):513–518. doi: 10.1016/s0955-0674(97)80027-0. [DOI] [PubMed] [Google Scholar]
  17. Griffing L. R. Comparisons of Golgi structure and dynamics in plant and animal cells. J Electron Microsc Tech. 1991 Feb;17(2):179–199. doi: 10.1002/jemt.1060170206. [DOI] [PubMed] [Google Scholar]
  18. Harder T., Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol. 1997 Aug;9(4):534–542. doi: 10.1016/s0955-0674(97)80030-0. [DOI] [PubMed] [Google Scholar]
  19. Hess S. D., Doroshenko P. A., Augustine G. J. A functional role for GTP-binding proteins in synaptic vesicle cycling. Science. 1993 Feb 19;259(5098):1169–1172. doi: 10.1126/science.8438167. [DOI] [PubMed] [Google Scholar]
  20. Homann U., Tester M. Ca2+-independent and Ca2+/GTP-binding protein-controlled exocytosis in a plant cell. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6565–6570. doi: 10.1073/pnas.94.12.6565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hoshino T., Mizutani A., Chida M., Hidaka H., Mizutani J. Plant annexin form homodimer during Ca(2+)-dependent liposome aggregation. Biochem Mol Biol Int. 1995 Apr;35(4):749–755. [PubMed] [Google Scholar]
  22. Ikonen E., Tagaya M., Ullrich O., Montecucco C., Simons K. Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell. 1995 May 19;81(4):571–580. doi: 10.1016/0092-8674(95)90078-0. [DOI] [PubMed] [Google Scholar]
  23. Joshi C., Fernandez J. M. Capacitance measurements. An analysis of the phase detector technique used to study exocytosis and endocytosis. Biophys J. 1988 Jun;53(6):885–892. doi: 10.1016/S0006-3495(88)83169-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McClung A. D., Carroll A. D., Battey N. H. Identification and characterization of ATPase activity associated with maize (Zea mays) annexins. Biochem J. 1994 Nov 1;303(Pt 3):709–712. doi: 10.1042/bj3030709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moore P. J., Swords K. M., Lynch M. A., Staehelin L. A. Spatial organization of the assembly pathways of glycoproteins and complex polysaccharides in the Golgi apparatus of plants. J Cell Biol. 1991 Feb;112(4):589–602. doi: 10.1083/jcb.112.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nuoffer C., Balch W. E. GTPases: multifunctional molecular switches regulating vesicular traffic. Annu Rev Biochem. 1994;63:949–990. doi: 10.1146/annurev.bi.63.070194.004505. [DOI] [PubMed] [Google Scholar]
  27. Pollard H. B., Rojas E., Pastor R. W., Rojas E. M., Guy H. R., Burns A. L. Synexin: molecular mechanism of calcium-dependent membrane fusion and voltage-dependent calcium-channel activity. Evidence in support of the "hydrophobic bridge hypothesis" for exocytotic membrane fusion. Ann N Y Acad Sci. 1991;635:328–351. doi: 10.1111/j.1749-6632.1991.tb36503.x. [DOI] [PubMed] [Google Scholar]
  28. Pusch M., Neher E. Rates of diffusional exchange between small cells and a measuring patch pipette. Pflugers Arch. 1988 Feb;411(2):204–211. doi: 10.1007/BF00582316. [DOI] [PubMed] [Google Scholar]
  29. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  30. Scheres B., McKhann H. I., Van Den Berg C. Roots Redefined: Anatomical and Genetic Analysis of Root Development. Plant Physiol. 1996 Aug;111(4):959–964. doi: 10.1104/pp.111.4.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith C. B., Betz W. J. Simultaneous independent measurement of endocytosis and exocytosis. Nature. 1996 Apr 11;380(6574):531–534. doi: 10.1038/380531a0. [DOI] [PubMed] [Google Scholar]
  32. Taylor A. R., Brownlee C. Localized Patch Clamping of Plasma Membrane of a Polarized Plant Cell : Laser Microsurgery of the Fucus spiralis Rhizoid Cell Wall. Plant Physiol. 1992 Aug;99(4):1686–1688. doi: 10.1104/pp.99.4.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Taylor A. R., Manison NFH., Fernandez C., Wood J., Brownlee C. Spatial Organization of Calcium Signaling Involved in Cell Volume Control in the Fucus Rhizoid. Plant Cell. 1996 Nov;8(11):2015–2031. doi: 10.1105/tpc.8.11.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tester M., Zorec R. Cytoplasmic calcium stimulates exocytosis in a plant secretory cell. Biophys J. 1992 Sep;63(3):864–867. doi: 10.1016/S0006-3495(92)81662-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Verma DPS., Cheon C., 3rd, Hong Z. Small GTP-Binding Proteins and Membrane Biogenesis in Plants. Plant Physiol. 1994 Sep;106(1):1–6. doi: 10.1104/pp.106.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vitale N., Mukai H., Rouot B., Thiersé D., Aunis D., Bader M. F. Exocytosis in chromaffin cells. Possible involvement of the heterotrimeric GTP-binding protein G(o). J Biol Chem. 1993 Jul 15;268(20):14715–14723. [PubMed] [Google Scholar]
  37. Wilson K. L. NSF-independent fusion mechanisms. Cell. 1995 May 19;81(4):475–477. doi: 10.1016/0092-8674(95)90067-5. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES