Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Aug;10(8):1277–1294. doi: 10.1105/tpc.10.8.1277

Inactivation of a glycyl-tRNA synthetase leads to an arrest in plant embryo development.

U Uwer 1, L Willmitzer 1, T Altmann 1
PMCID: PMC144065  PMID: 9707529

Abstract

Embryo formation is the first patterning process during vegetative plant growth. Using transposons as insertional mutagens in Arabidopsis, we identified the mutant edd1 that shows embryo-defective development. The insertion mutation is lethal, arresting embryo growth between the globular and heart stages of embryonic development. The mutant phenotype cosegregates with a transposed Dissociation element. Sequences flanking the transposed element were isolated and used to isolate a full-length cDNA clone representing the wild-type EDD1 gene. Complementation of the mutant through Agrobacterium-mediated gene transfer of an EDD1 wild-type copy as well as loss of the transposon concomitant with phenotypic reversion demonstrated that the transposon had caused the mutation. Based on homology to Escherichia coli, the EDD1 gene is predicted to encode a novel glycyl-tRNA synthetase (GlyRS) that has not been identified previously in higher plants. An N-terminal portion of the plant protein is able to direct a marker protein into pea chloroplasts. Thus, the gene identified by the embryo-defective insertion mutation encodes a GlyRS homolog, probably acting within the plastidic compartment.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhundova G. G., Grinikh L. I., Shevchenko V. V. Razvitie zarodyshei Arabidopsis thaliana posle gamma-oblucheniia rastenii v generativno faze. Ontogenez. 1978;9(5):514–519. [PubMed] [Google Scholar]
  2. Altmann T., Felix G., Jessop A., Kauschmann A., Uwer U., Peña-Cortés H., Willmitzer L. Ac/Ds transposon mutagenesis in Arabidopsis thaliana: mutant spectrum and frequency of Ds insertion mutants. Mol Gen Genet. 1995 Jun 10;247(5):646–652. doi: 10.1007/BF00290357. [DOI] [PubMed] [Google Scholar]
  3. Anthony J. L., Vonder Haar R. A., Hall T. C. Nucleotide sequence of an alpha-phaseolin gene from Phaseolus vulgaris. Nucleic Acids Res. 1990 Jun 11;18(11):3396–3396. doi: 10.1093/nar/18.11.3396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker B., Coupland G., Fedoroff N., Starlinger P., Schell J. Phenotypic assay for excision of the maize controlling element Ac in tobacco. EMBO J. 1987 Jun;6(6):1547–1554. doi: 10.1002/j.1460-2075.1987.tb02399.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bancroft I., Jones J. D., Dean C. Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell. 1993 Jun;5(6):631–638. doi: 10.1105/tpc.5.6.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bhattacharyya M. K., Smith A. M., Ellis T. H., Hedley C., Martin C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell. 1990 Jan 12;60(1):115–122. doi: 10.1016/0092-8674(90)90721-p. [DOI] [PubMed] [Google Scholar]
  7. Brantner J. H., Dure L. S., 3rd The developmental biochemistry of cotton seed embryogenesis and germination. VI. Levels of cytosol and chloroplast aminoacyl-tRNA synthetases during cotyledon development. Biochim Biophys Acta. 1975 Dec 4;414(2):99–114. doi: 10.1016/0005-2787(75)90213-0. [DOI] [PubMed] [Google Scholar]
  8. Busch M., Mayer U., Jürgens G. Molecular analysis of the Arabidopsis pattern formation of gene GNOM: gene structure and intragenic complementation. Mol Gen Genet. 1996 Apr 10;250(6):681–691. doi: 10.1007/BF02172979. [DOI] [PubMed] [Google Scholar]
  9. Bäumlein H., Boerjan W., Nagy I., Bassüner R., Van Montagu M., Inzé D., Wobus U. A novel seed protein gene from Vicia faba is developmentally regulated in transgenic tobacco and Arabidopsis plants. Mol Gen Genet. 1991 Mar;225(3):459–467. doi: 10.1007/BF00261688. [DOI] [PubMed] [Google Scholar]
  10. Chatterjee M., Sparvoli S., Edmunds C., Garosi P., Findlay K., Martin C. DAG, a gene required for chloroplast differentiation and palisade development in Antirrhinum majus. EMBO J. 1996 Aug 15;15(16):4194–4207. [PMC free article] [PubMed] [Google Scholar]
  11. Chuck G., Robbins T., Nijjar C., Ralston E., Courtney-Gutterson N., Dooner H. K. Tagging and Cloning of a Petunia Flower Color Gene with the Maize Transposable Element Activator. Plant Cell. 1993 Apr;5(4):371–378. doi: 10.1105/tpc.5.4.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Clark J. K., Sheridan W. F. Isolation and Characterization of 51 embryo-specific Mutations of Maize. Plant Cell. 1991 Sep;3(9):935–951. doi: 10.1105/tpc.3.9.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Creissen G., Reynolds H., Xue Y., Mullineaux P. Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J. 1995 Aug;8(2):167–175. doi: 10.1046/j.1365-313x.1995.08020167.x. [DOI] [PubMed] [Google Scholar]
  15. Creusot F., Fouilloux E., Dron M., Lafleuriel J., Picard G., Billault A., Le Paslier D., Cohen D., Chabouté M. E., Durr A. The CIC library: a large insert YAC library for genome mapping in Arabidopsis thaliana. Plant J. 1995 Nov;8(5):763–770. doi: 10.1046/j.1365-313x.1995.08050763.x. [DOI] [PubMed] [Google Scholar]
  16. De Jong A. J., Heidstra R., Spaink H. P., Hartog M. V., Meijer E. A., Hendriks T., Schiavo F. L., Terzi M., Bisseling T., Van Kammen A. Rhizobium Lipooligosaccharides Rescue a Carrot Somatic Embryo Mutant. Plant Cell. 1993 Jun;5(6):615–620. doi: 10.1105/tpc.5.6.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Deblaere R., Bytebier B., De Greve H., Deboeck F., Schell J., Van Montagu M., Leemans J. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 1985 Jul 11;13(13):4777–4788. doi: 10.1093/nar/13.13.4777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991 Mar 25;19(6):1349–1349. doi: 10.1093/nar/19.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  20. Fiedler U., Filistein R., Wobus U., Bäumlein H. A complex ensemble of cis-regulatory elements controls the expression of a Vicia faba non-storage seed protein gene. Plant Mol Biol. 1993 Jul;22(4):669–679. doi: 10.1007/BF00047407. [DOI] [PubMed] [Google Scholar]
  21. Franck A., Guilley H., Jonard G., Richards K., Hirth L. Nucleotide sequence of cauliflower mosaic virus DNA. Cell. 1980 Aug;21(1):285–294. doi: 10.1016/0092-8674(80)90136-1. [DOI] [PubMed] [Google Scholar]
  22. Galili G., Altschuler Y., Levanony H. Assembly and transport of seed storage proteins. Trends Cell Biol. 1993 Dec;3(12):437–442. doi: 10.1016/0962-8924(93)90033-w. [DOI] [PubMed] [Google Scholar]
  23. Gamborg O. L., Miller R. A., Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968 Apr;50(1):151–158. doi: 10.1016/0014-4827(68)90403-5. [DOI] [PubMed] [Google Scholar]
  24. Ge Q., Trieu E. P., Targoff I. N. Primary structure and functional expression of human Glycyl-tRNA synthetase, an autoantigen in myositis. J Biol Chem. 1994 Nov 18;269(46):28790–28797. [PubMed] [Google Scholar]
  25. Goldberg R. B., Barker S. J., Perez-Grau L. Regulation of gene expression during plant embryogenesis. Cell. 1989 Jan 27;56(2):149–160. doi: 10.1016/0092-8674(89)90888-x. [DOI] [PubMed] [Google Scholar]
  26. Goldberg R. B., de Paiva G., Yadegari R. Plant embryogenesis: zygote to seed. Science. 1994 Oct 28;266(5185):605–614. doi: 10.1126/science.266.5185.605. [DOI] [PubMed] [Google Scholar]
  27. Han C. D., Coe E. H., Jr, Martienssen R. A. Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J. 1992 Nov;11(11):4037–4046. doi: 10.1002/j.1460-2075.1992.tb05497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Huang J., Hack E., Thornburg R. W., Myers A. M. A yeast mitochondrial leader peptide functions in vivo as a dual targeting signal for both chloroplasts and mitochondria. Plant Cell. 1990 Dec;2(12):1249–1260. doi: 10.1105/tpc.2.12.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hudson A., Carpenter R., Doyle S., Coen E. S. Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J. 1993 Oct;12(10):3711–3719. doi: 10.1002/j.1460-2075.1993.tb06048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hurt E. C., Soltanifar N., Goldschmidt-Clermont M., Rochaix J. D., Schatz G. The cleavable pre-sequence of an imported chloroplast protein directs attached polypeptides into yeast mitochondria. EMBO J. 1986 Jun;5(6):1343–1350. doi: 10.1002/j.1460-2075.1986.tb04365.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Joshi C. P. Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucleic Acids Res. 1987 Dec 10;15(23):9627–9640. doi: 10.1093/nar/15.23.9627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Keddie J. S., Carroll B., Jones J. D., Gruissem W. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves. EMBO J. 1996 Aug 15;15(16):4208–4217. [PMC free article] [PubMed] [Google Scholar]
  33. Keng T., Webster T. A., Sauer R. T., Schimmel P. Gene for Escherichia coli glycyl-tRNA synthetase has tandem subunit coding regions in the same reading frame. J Biol Chem. 1982 Nov 10;257(21):12503–12508. [PubMed] [Google Scholar]
  34. Kern D., Giegé R., Ebel J. P. Glycyl-tRNA synthetase from baker's yeast. Interconversion between active and inactive forms of the enzyme. Biochemistry. 1981 Jan 6;20(1):122–131. doi: 10.1021/bi00504a021. [DOI] [PubMed] [Google Scholar]
  35. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  36. Liu Cm., Xu Zh., Chua N. H. Auxin Polar Transport Is Essential for the Establishment of Bilateral Symmetry during Early Plant Embryogenesis. Plant Cell. 1993 Jun;5(6):621–630. doi: 10.1105/tpc.5.6.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  38. Long D., Swinburne J., Martin M., Wilson K., Sundberg E., Lee K., Coupland G. Analysis of the frequency of inheritance of transposed Ds elements in Arabidopsis after activation by a CaMV 35S promoter fusion to the Ac transposase gene. Mol Gen Genet. 1993 Dec;241(5-6):627–636. doi: 10.1007/BF00279905. [DOI] [PubMed] [Google Scholar]
  39. Lukowitz W., Mayer U., Jürgens G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell. 1996 Jan 12;84(1):61–71. doi: 10.1016/s0092-8674(00)80993-9. [DOI] [PubMed] [Google Scholar]
  40. Lycett G. W., Croy R. R., Shirsat A. H., Boulter D. The complete nucleotide sequence of a legumin gene from pea (Pisum sativum L.). Nucleic Acids Res. 1984 Jun 11;12(11):4493–4506. doi: 10.1093/nar/12.11.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Martienssen R. A., Barkan A., Freeling M., Taylor W. C. Molecular cloning of a maize gene involved in photosynthetic membrane organization that is regulated by Robertson's Mutator. EMBO J. 1989 Jun;8(6):1633–1639. doi: 10.1002/j.1460-2075.1989.tb03553.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Martínez-Zapater J. M., Gil P., Capel J., Somerville C. R. Mutations at the Arabidopsis CHM locus promote rearrangements of the mitochondrial genome. Plant Cell. 1992 Aug;4(8):889–899. doi: 10.1105/tpc.4.8.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Mayfield S. P., Taylor W. C. Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlorophyll a/b binding protein (LHCP) mRNA. Eur J Biochem. 1984 Oct 1;144(1):79–84. doi: 10.1111/j.1432-1033.1984.tb08433.x. [DOI] [PubMed] [Google Scholar]
  44. Nada S., Chang P. K., Dignam J. D. Primary structure of the gene for glycyl-tRNA synthetase from Bombyx mori. J Biol Chem. 1993 Apr 15;268(11):7660–7667. [PubMed] [Google Scholar]
  45. Nairn C. J., Winesett L., Ferl R. J. Nucleotide sequence of an actin gene from Arabidopsis thaliana. Gene. 1988 May 30;65(2):247–257. doi: 10.1016/0378-1119(88)90461-1. [DOI] [PubMed] [Google Scholar]
  46. Parthier B., Krauspe R., Samtleben S. Light-stimulated synthesis of aminoacyl-tRNA synthetases in greening Euglena gracilis. Biochim Biophys Acta. 1972 Aug 25;277(2):335–341. doi: 10.1016/0005-2787(72)90415-7. [DOI] [PubMed] [Google Scholar]
  47. Pohlman R. F., Fedoroff N. V., Messing J. The nucleotide sequence of the maize controlling element Activator. Cell. 1984 Jun;37(2):635–643. doi: 10.1016/0092-8674(84)90395-7. [DOI] [PubMed] [Google Scholar]
  48. Pyke K. A., Leech R. M. A Genetic Analysis of Chloroplast Division and Expansion in Arabidopsis thaliana. Plant Physiol. 1994 Jan;104(1):201–207. doi: 10.1104/pp.104.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Pyke K. A., Leech R. M. Chloroplast Division and Expansion Is Radically Altered by Nuclear Mutations in Arabidopsis thaliana. Plant Physiol. 1992 Jul;99(3):1005–1008. doi: 10.1104/pp.99.3.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Reinbothe S., Parthier B. Translational regulation of plastid gene expression in Euglena gracilis. FEBS Lett. 1990 Jun 4;265(1-2):7–11. doi: 10.1016/0014-5793(90)80870-o. [DOI] [PubMed] [Google Scholar]
  51. Robertson E. J., Pyke K. A., Leech R. M. arc6, an extreme chloroplast division mutant of Arabidopsis also alters proplastid proliferation and morphology in shoot and root apices. J Cell Sci. 1995 Sep;108(Pt 9):2937–2944. doi: 10.1242/jcs.108.9.2937. [DOI] [PubMed] [Google Scholar]
  52. Schiavone F. M., Cooke T. J. Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Differ. 1987 Jun;21(1):53–62. doi: 10.1016/0045-6039(87)90448-9. [DOI] [PubMed] [Google Scholar]
  53. Schimmel P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem. 1987;56:125–158. doi: 10.1146/annurev.bi.56.070187.001013. [DOI] [PubMed] [Google Scholar]
  54. Schmidt R., Love K., West J., Lenehan Z., Dean C. Description of 31 YAC contigs spanning the majority of Arabidopsis thaliana chromosome 5. Plant J. 1997 Mar;11(3):563–572. doi: 10.1046/j.1365-313x.1997.11030563.x. [DOI] [PubMed] [Google Scholar]
  55. Shevell D. E., Leu W. M., Gillmor C. S., Xia G., Feldmann K. A., Chua N. H. EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell. 1994 Jul 1;77(7):1051–1062. doi: 10.1016/0092-8674(94)90444-8. [DOI] [PubMed] [Google Scholar]
  56. Shiba K., Schimmel P., Motegi H., Noda T. Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J Biol Chem. 1994 Nov 25;269(47):30049–30055. [PubMed] [Google Scholar]
  57. Swinburne J., Balcells L., Scofield S. R., Jones J. D., Coupland G. Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis. Plant Cell. 1992 May;4(5):583–595. doi: 10.1105/tpc.4.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tacke E., Korfhage C., Michel D., Maddaloni M., Motto M., Lanzini S., Salamini F., Döring H. P. Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. Plant J. 1995 Dec;8(6):907–917. doi: 10.1046/j.1365-313x.1995.8060907.x. [DOI] [PubMed] [Google Scholar]
  59. Tsugeki R., Kochieva E. Z., Fedoroff N. V. A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J. 1996 Sep;10(3):479–489. doi: 10.1046/j.1365-313x.1996.10030479.x. [DOI] [PubMed] [Google Scholar]
  60. Vernon D. M., Meinke D. W. Embryogenic transformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis. Dev Biol. 1994 Oct;165(2):566–573. doi: 10.1006/dbio.1994.1276. [DOI] [PubMed] [Google Scholar]
  61. Voelker R., Barkan A. Two nuclear mutations disrupt distinct pathways for targeting proteins to the chloroplast thylakoid. EMBO J. 1995 Aug 15;14(16):3905–3914. doi: 10.1002/j.1460-2075.1995.tb00062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Walbot V., Coe E. H. Nuclear gene iojap conditions a programmed change to ribosome-less plastids in Zea mays. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2760–2764. doi: 10.1073/pnas.76.6.2760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Webster T. A., Gibson B. W., Keng T., Biemann K., Schimmel P. Primary structures of both subunits of Escherichia coli glycyl-tRNA synthetase. J Biol Chem. 1983 Sep 10;258(17):10637–10641. [PubMed] [Google Scholar]
  64. West MAL., Harada J. J. Embryogenesis in Higher Plants: An Overview. Plant Cell. 1993 Oct;5(10):1361–1369. doi: 10.1105/tpc.5.10.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wetzel C. M., Jiang C. Z., Meehan L. J., Voytas D. F., Rodermel S. R. Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J. 1994 Aug;6(2):161–175. doi: 10.1046/j.1365-313x.1994.6020161.x. [DOI] [PubMed] [Google Scholar]
  66. Yadegari R., Paiva GRd., Laux T., Koltunow A. M., Apuya N., Zimmerman J. L., Fischer R. L., Harada J. J., Goldberg R. B. Cell Differentiation and Morphogenesis Are Uncoupled in Arabidopsis raspberry Embryos. Plant Cell. 1994 Dec;6(12):1713–1729. doi: 10.1105/tpc.6.12.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Yeung E. C., Meinke D. W. Embryogenesis in Angiosperms: Development of the Suspensor. Plant Cell. 1993 Oct;5(10):1371–1381. doi: 10.1105/tpc.5.10.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Zimmerman J. L. Somatic Embryogenesis: A Model for Early Development in Higher Plants. Plant Cell. 1993 Oct;5(10):1411–1423. doi: 10.1105/tpc.5.10.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. von Heijne G., Nishikawa K. Chloroplast transit peptides. The perfect random coil? FEBS Lett. 1991 Jan 14;278(1):1–3. doi: 10.1016/0014-5793(91)80069-f. [DOI] [PubMed] [Google Scholar]
  70. von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES