Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Aug;10(8):1349–1359. doi: 10.1105/tpc.10.8.1349

Higher order chromatin structures in maize and Arabidopsis.

A L Paul 1, R J Ferl 1
PMCID: PMC144069  PMID: 9707534

Abstract

We are investigating the nature of plant genome domain organization by using DNase I- and topoisomerase II-mediated cleavage to produce domains reflecting higher order chromatin structures. Limited digestion of nuclei with DNase I results in the conversion of the >800 kb genomic DNA to an accumulation of fragments that represents a collection of individual domains of the genome created by preferential cleavage at super-hypersensitive regions. The median size of these fragments is approximately 45 kb in maize and approximately 25 kb in Arabidopsis. Hybridization analyses with specific gene probes revealed that individual genes occupy discrete domains within the distribution created by DNase I. The maize alcohol dehydrogenase Adh1 gene occupies a domain of 90 kb, and the maize general regulatory factor GRF1 gene occupies a domain of 100 kb in length. Arabidopsis Adh was found within two distinct domains of 8.3 and 6.1 kb, whereas an Arabidopsis GRF gene occupies a single domain of 27 kb. The domains created by topoisomerase II-mediated cleavage are identical in size to those created by DNase I. These results imply that the genome is not packaged by means of a random gathering of the genome into domains of indiscriminate length but rather that the genome is gathered into specific domains and that a gene consistently occupies a discrete physical section of the genome. Our proposed model is that these large organizational domains represent the fundamental structural loop domains created by attachment of chromatin to the nuclear matrix at loop basements. These loop domains may be distinct from the domains created by the matrix attachment regions that typically flank smaller, often functionally distinct sections of the genome.

Full Text

The Full Text of this article is available as a PDF (350.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. C., Hall G. E., Jr, Childs L. C., Weissinger A. K., Spiker S., Thompson W. F. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell. 1993 Jun;5(6):603–613. doi: 10.1105/tpc.5.6.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen G. C., Hall G., Jr, Michalowski S., Newman W., Spiker S., Weissinger A. K., Thompson W. F. High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell. 1996 May;8(5):899–913. doi: 10.1105/tpc.8.5.899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avramova Z., Bennetzen J. L. Isolation of matrices from maize leaf nuclei: identification of a matrix-binding site adjacent to the Adh1 gene. Plant Mol Biol. 1993 Sep;22(6):1135–1143. doi: 10.1007/BF00028982. [DOI] [PubMed] [Google Scholar]
  4. Blasquez V. C., Xu M., Moses S. C., Garrard W. T. Immunoglobulin kappa gene expression after stable integration. I. Role of the intronic MAR and enhancer in plasmacytoma cells. J Biol Chem. 1989 Dec 15;264(35):21183–21189. [PubMed] [Google Scholar]
  5. Bode J., Kohwi Y., Dickinson L., Joh T., Klehr D., Mielke C., Kohwi-Shigematsu T. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science. 1992 Jan 10;255(5041):195–197. doi: 10.1126/science.1553545. [DOI] [PubMed] [Google Scholar]
  6. Breyne P., Van Montagu M., Gheysen G. The role of scaffold attachment regions in the structural and functional organization of plant chromatin. Transgenic Res. 1994 May;3(3):195–202. doi: 10.1007/BF01973987. [DOI] [PubMed] [Google Scholar]
  7. Bustos M. M., Guiltinan M. J., Jordano J., Begum D., Kalkan F. A., Hall T. C. Regulation of beta-glucuronidase expression in transgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a French bean beta-phaseolin gene. Plant Cell. 1989 Sep;1(9):839–853. doi: 10.1105/tpc.1.9.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen G. L., Yang L., Rowe T. C., Halligan B. D., Tewey K. M., Liu L. F. Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem. 1984 Nov 10;259(21):13560–13566. [PubMed] [Google Scholar]
  9. Chinn A. M., Comai L. The heat shock cognate 80 gene of tomato is flanked by matrix attachment regions. Plant Mol Biol. 1996 Dec;32(5):959–968. doi: 10.1007/BF00020492. [DOI] [PubMed] [Google Scholar]
  10. Cockerill P. N., Garrard W. T. Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell. 1986 Jan 31;44(2):273–282. doi: 10.1016/0092-8674(86)90761-0. [DOI] [PubMed] [Google Scholar]
  11. Cockerill P. N., Garrard W. T. Chromosomal loop anchorage sites appear to be evolutionarily conserved. FEBS Lett. 1986 Aug 11;204(1):5–7. doi: 10.1016/0014-5793(86)81377-1. [DOI] [PubMed] [Google Scholar]
  12. Cook P. R., Brazell I. A. Conformational constraints in nuclear DNA. J Cell Sci. 1976 Nov;22(2):287–302. doi: 10.1242/jcs.22.2.287. [DOI] [PubMed] [Google Scholar]
  13. Davie J. R. The nuclear matrix and the regulation of chromatin organization and function. Int Rev Cytol. 1995;162A:191–250. doi: 10.1016/s0074-7696(08)61232-2. [DOI] [PubMed] [Google Scholar]
  14. Espinás M. L., Carballo M. Pulsed-field gel electrophoresis analysis of higher-order chromatin structures of Zea mays. Highly methylated DNA in the 50 kb chromatin structure. Plant Mol Biol. 1993 Mar;21(5):847–857. doi: 10.1007/BF00027116. [DOI] [PubMed] [Google Scholar]
  15. Filipski J., Leblanc J., Youdale T., Sikorska M., Walker P. R. Periodicity of DNA folding in higher order chromatin structures. EMBO J. 1990 Apr;9(4):1319–1327. doi: 10.1002/j.1460-2075.1990.tb08241.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Freeman L. A., Garrard W. T. DNA supercoiling in chromatin structure and gene expression. Crit Rev Eukaryot Gene Expr. 1992;2(2):165–209. [PubMed] [Google Scholar]
  17. Gasser S. M., Amati B. B., Cardenas M. E., Hofmann J. F. Studies on scaffold attachment sites and their relation to genome function. Int Rev Cytol. 1989;119:57–96. doi: 10.1016/s0074-7696(08)60649-x. [DOI] [PubMed] [Google Scholar]
  18. Gromova I. I., Nielsen O. F., Razin S. V. Long-range fragmentation of the eukaryotic genome by exogenous and endogenous nucleases proceeds in a specific fashion via preferential DNA cleavage at matrix attachment sites. J Biol Chem. 1995 Aug 4;270(31):18685–18690. doi: 10.1074/jbc.270.31.18685. [DOI] [PubMed] [Google Scholar]
  19. Gromova I. I., Thomsen B., Razin S. V. Different topoisomerase II antitumor drugs direct similar specific long-range fragmentation of an amplified c-MYC gene locus in living cells and in high-salt-extracted nuclei. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):102–106. doi: 10.1073/pnas.92.1.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Iarovaia O. V., Lagarkova M. A., Razin S. V. The specificity of human lymphocyte nucleolar DNA long-range fragmentation by endogenous topoisomerase II and exogenous Bal 31 nuclease depends on cell proliferation status. Biochemistry. 1995 Mar 28;34(12):4133–4138. doi: 10.1021/bi00012a032. [DOI] [PubMed] [Google Scholar]
  21. Iarovaia O., Hancock R., Lagarkova M., Miassod R., Razin S. V. Mapping of genomic DNA loop organization in a 500-kilobase region of the Drosophila X chromosome by the topoisomerase II-mediated DNA loop excision protocol. Mol Cell Biol. 1996 Jan;16(1):302–308. doi: 10.1128/mcb.16.1.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jackson D. A., Dickinson P., Cook P. R. The size of chromatin loops in HeLa cells. EMBO J. 1990 Feb;9(2):567–571. doi: 10.1002/j.1460-2075.1990.tb08144.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jupe E. R., Sinden R. R., Cartwright I. L. Specialized chromatin structure domain boundary elements flanking a Drosophila heat shock gene locus are under torsional strain in vivo. Biochemistry. 1995 Feb 28;34(8):2628–2633. doi: 10.1021/bi00008a029. [DOI] [PubMed] [Google Scholar]
  24. Käs E., Laemmli U. K. In vivo topoisomerase II cleavage of the Drosophila histone and satellite III repeats: DNA sequence and structural characteristics. EMBO J. 1992 Feb;11(2):705–716. doi: 10.1002/j.1460-2075.1992.tb05103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Laemmli U. K., Käs E., Poljak L., Adachi Y. Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr Opin Genet Dev. 1992 Apr;2(2):275–285. doi: 10.1016/s0959-437x(05)80285-0. [DOI] [PubMed] [Google Scholar]
  26. Lagarkova M. A., Iarovaia O. V., Razin S. V. Excision of chromosomal DNA loops by treatment of permeabilised cells with Bal 31 nuclease. Mol Gen Genet. 1995 Nov 15;249(2):253–256. doi: 10.1007/BF00290373. [DOI] [PubMed] [Google Scholar]
  27. Lagarkova M. A., Iarovaia O. V., Razin S. V. Large-scale fragmentation of mammalian DNA in the course of apoptosis proceeds via excision of chromosomal DNA loops and their oligomers. J Biol Chem. 1995 Sep 1;270(35):20239–20241. doi: 10.1074/jbc.270.35.20239. [DOI] [PubMed] [Google Scholar]
  28. Liu L. F., Rowe T. C., Yang L., Tewey K. M., Chen G. L. Cleavage of DNA by mammalian DNA topoisomerase II. J Biol Chem. 1983 Dec 25;258(24):15365–15370. [PubMed] [Google Scholar]
  29. Loc P. V., Strätling W. H. The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain. EMBO J. 1988 Mar;7(3):655–664. doi: 10.1002/j.1460-2075.1988.tb02860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ludérus M. E., den Blaauwen J. L., de Smit O. J., Compton D. A., van Driel R. Binding of matrix attachment regions to lamin polymers involves single-stranded regions and the minor groove. Mol Cell Biol. 1994 Sep;14(9):6297–6305. doi: 10.1128/mcb.14.9.6297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mirkovitch J., Mirault M. E., Laemmli U. K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell. 1984 Nov;39(1):223–232. doi: 10.1016/0092-8674(84)90208-3. [DOI] [PubMed] [Google Scholar]
  32. Mirkovitch J., Spierer P., Laemmli U. K. Genes and loops in 320,000 base-pairs of the Drosophila melanogaster chromosome. J Mol Biol. 1986 Jul 20;190(2):255–258. doi: 10.1016/0022-2836(86)90296-2. [DOI] [PubMed] [Google Scholar]
  33. Paul A. L., Ferl R. J. In vivo footprinting reveals unique cis-elements and different modes of hypoxic induction in maize Adh1 and Adh2. Plant Cell. 1991 Feb;3(2):159–168. doi: 10.1105/tpc.3.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Paul A. L., Ferl R. J. Osmium tetroxide footprinting of a scaffold attachment region in the maize Adh1 promoter. Plant Mol Biol. 1993 Sep;22(6):1145–1151. doi: 10.1007/BF00028983. [DOI] [PubMed] [Google Scholar]
  35. Paul A. L., Vasil V., Vasil I. K., Ferl R. J. Constitutive and anaerobically induced DNase-I-hypersensitive sites in the 5' region of the maize Adh1 gene. Proc Natl Acad Sci U S A. 1987 Feb;84(3):799–803. doi: 10.1073/pnas.84.3.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Paulson J. R., Laemmli U. K. The structure of histone-depleted metaphase chromosomes. Cell. 1977 Nov;12(3):817–828. doi: 10.1016/0092-8674(77)90280-x. [DOI] [PubMed] [Google Scholar]
  37. Phi-Van L., Strätling W. H. Dissection of the ability of the chicken lysozyme gene 5' matrix attachment region to stimulate transgene expression and to dampen position effects. Biochemistry. 1996 Aug 20;35(33):10735–10742. doi: 10.1021/bi9603783. [DOI] [PubMed] [Google Scholar]
  38. Razin S. V. Functional architecture of chromosomal DNA domains. Crit Rev Eukaryot Gene Expr. 1996;6(2-3):247–269. doi: 10.1615/critreveukargeneexpr.v6.i2-3.70. [DOI] [PubMed] [Google Scholar]
  39. Razin S. V., Gromova I. I. The channels model of nuclear matrix structure. Bioessays. 1995 May;17(5):443–450. doi: 10.1002/bies.950170512. [DOI] [PubMed] [Google Scholar]
  40. Razin S. V., Hancock R., Iarovaia O., Westergaard O., Gromova I., Georgiev G. P. Structural-functional organization of chromosomal DNA domains. Cold Spring Harb Symp Quant Biol. 1993;58:25–35. doi: 10.1101/sqb.1993.058.01.006. [DOI] [PubMed] [Google Scholar]
  41. Reitman M., Felsenfeld G. Developmental regulation of topoisomerase II sites and DNase I-hypersensitive sites in the chicken beta-globin locus. Mol Cell Biol. 1990 Jun;10(6):2774–2786. doi: 10.1128/mcb.10.6.2774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rowe T. C., Wang J. C., Liu L. F. In vivo localization of DNA topoisomerase II cleavage sites on Drosophila heat shock chromatin. Mol Cell Biol. 1986 Apr;6(4):985–992. doi: 10.1128/mcb.6.4.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Slatter R. E., Dupree P., Gray J. C. A scaffold-associated DNA region is located downstream of the pea plastocyanin gene. Plant Cell. 1991 Nov;3(11):1239–1250. doi: 10.1105/tpc.3.11.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stief A., Winter D. M., Strätling W. H., Sippel A. E. A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature. 1989 Sep 28;341(6240):343–345. doi: 10.1038/341343a0. [DOI] [PubMed] [Google Scholar]
  45. Targa F. R., Razin S. V., de Moura Gallo C. V., Scherrer K. Excision close to matrix attachment regions of the entire chicken alpha-globin gene domain by nuclease S1 and characterization of the framing structures. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4422–4426. doi: 10.1073/pnas.91.10.4422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Villeponteau B., Lundell M., Martinson H. Torsional stress promotes the DNAase I sensitivity of active genes. Cell. 1984 Dec;39(3 Pt 2):469–478. doi: 10.1016/0092-8674(84)90454-9. [DOI] [PubMed] [Google Scholar]
  47. Zlatanova J. S., van Holde K. E. Chromatin loops and transcriptional regulation. Crit Rev Eukaryot Gene Expr. 1992;2(3):211–224. [PubMed] [Google Scholar]
  48. van Drunen C. M., Oosterling R. W., Keultjes G. M., Weisbeek P. J., van Driel R., Smeekens S. C. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana. Nucleic Acids Res. 1997 Oct 1;25(19):3904–3911. doi: 10.1093/nar/25.19.3904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. von Kries J. P., Buhrmester H., Strätling W. H. A matrix/scaffold attachment region binding protein: identification, purification, and mode of binding. Cell. 1991 Jan 11;64(1):123–135. doi: 10.1016/0092-8674(91)90214-j. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES