Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Aug;10(8):1361–1374. doi: 10.1105/tpc.10.8.1361

Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea.

K Adachi 1, J E Hamer 1
PMCID: PMC144070  PMID: 9707535

Abstract

cAMP is involved in signaling appressorium formation in the rice blast fungus Magnaporthe grisea. However, null mutations in a protein kinase A (PKA) catalytic subunit gene, CPKA, do not block appressorium formation, and mutations in the adenylate cyclase gene have pleiotropic effects on growth, conidiation, sexual development, and appressorium formation. Thus, cAMP signaling plays roles in both growth and morphogenesis as well as in appressorium formation. To clarify cAMP signaling in M. grisea, we have identified strains in which a null mutation in the adenylate cyclase gene (MAC1) has an unstable phenotype such that the bypass suppressors of the Mac1(-) phenotype (sum) could be identified. sum mutations completely restore growth and sexual and asexual morphogenesis and lead to an ability to form appressoria under conditions inhibitory to the wild type. PKA assays and molecular cloning showed that one suppressor mutation (sum1-99) alters a conserved amino acid in cAMP binding domain A of the regulatory subunit gene of PKA (SUM1), whereas other suppressor mutations act independently of PKA activity. PKA assays demonstrated that the catalytic subunit gene, CPKA, encodes the only detectable PKA activity in M. grisea. Because CPKA is dispensable for growth, morphogenesis, and appressorium formation, divergent catalytic subunit genes must play roles in these processes. These results suggest a model in which both saprophytic and pathogenic growth of M. grisea is regulated by adenylate cyclase but different effectors of cAMP mediate downstream effects specific for either cell morphogenesis or pathogenesis.

Full Text

The Full Text of this article is available as a PDF (463.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alspaugh J. A., Perfect J. R., Heitman J. Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev. 1997 Dec 1;11(23):3206–3217. doi: 10.1101/gad.11.23.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banuett F., Herskowitz I. Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev. 1994 Jun 15;8(12):1367–1378. doi: 10.1101/gad.8.12.1367. [DOI] [PubMed] [Google Scholar]
  3. Beckerman J. L., Ebbole D. J. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol Plant Microbe Interact. 1996 Aug;9(6):450–456. doi: 10.1094/mpmi-9-0450. [DOI] [PubMed] [Google Scholar]
  4. Beckerman J. L., Naider F., Ebbole D. J. Inhibition of pathogenicity of the rice blast fungus by Saccharomyces cerevisiae alpha-factor. Science. 1997 May 16;276(5315):1116–1119. doi: 10.1126/science.276.5315.1116. [DOI] [PubMed] [Google Scholar]
  5. Bruno K. S., Aramayo R., Minke P. F., Metzenberg R. L., Plamann M. Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent protein kinase. EMBO J. 1996 Nov 1;15(21):5772–5782. [PMC free article] [PubMed] [Google Scholar]
  6. Cannon J. F., Gitan R., Tatchell K. Yeast cAMP-dependent protein kinase regulatory subunit mutations display a variety of phenotypes. J Biol Chem. 1990 Jul 15;265(20):11897–11904. [PubMed] [Google Scholar]
  7. Choi W., Dean R. A. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell. 1997 Nov;9(11):1973–1983. doi: 10.1105/tpc.9.11.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crawford M. S., Chumley F. G., Weaver C. G., Valent B. Characterization of the Heterokaryotic and Vegetative Diploid Phases of MAGNAPORTHE GRISEA. Genetics. 1986 Dec;114(4):1111–1129. doi: 10.1093/genetics/114.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeVoti J., Seydoux G., Beach D., McLeod M. Interaction between ran1+ protein kinase and cAMP dependent protein kinase as negative regulators of fission yeast meiosis. EMBO J. 1991 Dec;10(12):3759–3768. doi: 10.1002/j.1460-2075.1991.tb04945.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Flawiá M. M., Terenzi H. F., Torres H. N. Characterization of Neurospora crassa mutant stratins deficient in adenylate cyclase activity. Arch Biochem Biophys. 1977 Apr 30;180(2):334–342. doi: 10.1016/0003-9861(77)90046-7. [DOI] [PubMed] [Google Scholar]
  11. Gao S., Nuss D. L. Distinct roles for two G protein alpha subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14122–14127. doi: 10.1073/pnas.93.24.14122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gold S. E., Brogdon S. M., Mayorga M. E., Kronstad J. W. The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell. 1997 Sep;9(9):1585–1594. doi: 10.1105/tpc.9.9.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gold S., Duncan G., Barrett K., Kronstad J. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 1994 Dec 1;8(23):2805–2816. doi: 10.1101/gad.8.23.2805. [DOI] [PubMed] [Google Scholar]
  14. Hamer J. E., Howard R. J., Chumley F. G., Valent B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science. 1988 Jan 15;239(4837):288–290. doi: 10.1126/science.239.4837.288. [DOI] [PubMed] [Google Scholar]
  15. Jin M., Fujita M., Culley B. M., Apolinario E., Yamamoto M., Maundrell K., Hoffman C. S. sck1, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase. Genetics. 1995 Jun;140(2):457–467. doi: 10.1093/genetics/140.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kasahara S., Nuss D. L. Targeted disruption of a fungal G-protein beta subunit gene results in increased vegetative growth but reduced virulence. Mol Plant Microbe Interact. 1997 Nov;10(8):984–993. doi: 10.1094/MPMI.1997.10.8.984. [DOI] [PubMed] [Google Scholar]
  17. Lee Y. H., Dean R. A. cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea. Plant Cell. 1993 Jun;5(6):693–700. doi: 10.1105/tpc.5.6.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liao H., Thorner J. Yeast mating pheromone alpha factor inhibits adenylate cyclase. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1898–1902. doi: 10.1073/pnas.77.4.1898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu S., Dean R. A. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact. 1997 Dec;10(9):1075–1086. doi: 10.1094/MPMI.1997.10.9.1075. [DOI] [PubMed] [Google Scholar]
  20. Lorenz M. C., Heitman J. Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J. 1997 Dec 1;16(23):7008–7018. doi: 10.1093/emboj/16.23.7008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marques M. do V., Gomes S. L. Cloning and structural analysis of the gene for the regulatory subunit of cAMP-dependent protein kinase in Blastocladiella emersonii. J Biol Chem. 1992 Aug 25;267(24):17201–17207. [PubMed] [Google Scholar]
  22. Matsumoto K., Uno I., Oshima Y., Ishikawa T. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2355–2359. doi: 10.1073/pnas.79.7.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mazón M. J., Behrens M. M., Morgado E., Portillo F. Low activity of the yeast cAMP-dependent protein kinase catalytic subunit Tpk3 is due to the poor expression of the TPK3 gene. Eur J Biochem. 1993 Apr 1;213(1):501–506. doi: 10.1111/j.1432-1033.1993.tb17787.x. [DOI] [PubMed] [Google Scholar]
  24. Mitchell T. K., Dean R. A. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell. 1995 Nov;7(11):1869–1878. doi: 10.1105/tpc.7.11.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murayama T., Fujisawa Y., Okano Y. A suppressor mutation which suppresses adenylyl cyclase mutations in Neurospora crassa. Exp Mycol. 1995 Dec;19(4):320–323. doi: 10.1006/emyc.1995.1039. [DOI] [PubMed] [Google Scholar]
  26. Müller G., Bandlow W. Lipolytic membrane release of two phosphatidylinositol-anchored cAMP receptor proteins in yeast alters their ligand-binding parameters. Arch Biochem Biophys. 1994 Feb 1;308(2):504–514. doi: 10.1006/abbi.1994.1071. [DOI] [PubMed] [Google Scholar]
  27. Pall M. L. Adenosine 3',5'-phosphate in fungi. Microbiol Rev. 1981 Sep;45(3):462–480. doi: 10.1128/mr.45.3.462-480.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Regenfelder E., Spellig T., Hartmann A., Lauenstein S., Bölker M., Kahmann R. G proteins in Ustilago maydis: transmission of multiple signals? EMBO J. 1997 Apr 15;16(8):1934–1942. doi: 10.1093/emboj/16.8.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Strathmann M., Hamilton B. A., Mayeda C. A., Simon M. I., Meyerowitz E. M., Palazzolo M. J. Transposon-facilitated DNA sequencing. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1247–1250. doi: 10.1073/pnas.88.4.1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Su Y., Dostmann W. R., Herberg F. W., Durick K., Xuong N. H., Ten Eyck L., Taylor S. S., Varughese K. I. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science. 1995 Aug 11;269(5225):807–813. doi: 10.1126/science.7638597. [DOI] [PubMed] [Google Scholar]
  31. Suzuki N., Choe H. R., Nishida Y., Yamawaki-Kataoka Y., Ohnishi S., Tamaoki T., Kataoka T. Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8711–8715. doi: 10.1073/pnas.87.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sweigard J. A., Chumley F. G., Valent B. Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea. Mol Gen Genet. 1992 Mar;232(2):174–182. doi: 10.1007/BF00279994. [DOI] [PubMed] [Google Scholar]
  33. Talbot N. J., Ebbole D. J., Hamer J. E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell. 1993 Nov;5(11):1575–1590. doi: 10.1105/tpc.5.11.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Talbot N. J. Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol. 1995 Jan;3(1):9–16. doi: 10.1016/s0966-842x(00)88862-9. [DOI] [PubMed] [Google Scholar]
  35. Talbot N. J., Kershaw M. J., Wakley G. E., De Vries OMH., Wessels JGH., Hamer J. E. MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea. Plant Cell. 1996 Jun;8(6):985–999. doi: 10.1105/tpc.8.6.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Taylor S. S., Buechler J. A., Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem. 1990;59:971–1005. doi: 10.1146/annurev.bi.59.070190.004543. [DOI] [PubMed] [Google Scholar]
  37. Terenzi H. F., Flawiá M. M., Torres H. N. A Neurospora crassa morphological mutant showing reduced adenylate cyclase activity. Biochem Biophys Res Commun. 1974 Jun 18;58(4):990–996. doi: 10.1016/s0006-291x(74)80241-x. [DOI] [PubMed] [Google Scholar]
  38. Terenzi H. F., Jorge J. A., Roselino J. E., Migliorini R. H. Adenylyl cyclase deficient cr-1 (Crisp) mutant of Neurospora crassa: cyclic AMP-dependent nutritional deficiencies. Arch Microbiol. 1979;123(3):251–258. doi: 10.1007/BF00406658. [DOI] [PubMed] [Google Scholar]
  39. Thevelein J. M. Signal transduction in yeast. Yeast. 1994 Dec;10(13):1753–1790. doi: 10.1002/yea.320101308. [DOI] [PubMed] [Google Scholar]
  40. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Toda T., Cameron S., Sass P., Wigler M. SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev. 1988 May;2(5):517–527. doi: 10.1101/gad.2.5.517. [DOI] [PubMed] [Google Scholar]
  42. Toda T., Cameron S., Sass P., Zoller M., Scott J. D., McMullen B., Hurwitz M., Krebs E. G., Wigler M. Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol. 1987 Apr;7(4):1371–1377. doi: 10.1128/mcb.7.4.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Toda T., Cameron S., Sass P., Zoller M., Wigler M. Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell. 1987 Jul 17;50(2):277–287. doi: 10.1016/0092-8674(87)90223-6. [DOI] [PubMed] [Google Scholar]
  44. Tokiwa G., Tyers M., Volpe T., Futcher B. Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature. 1994 Sep 22;371(6495):342–345. doi: 10.1038/371342a0. [DOI] [PubMed] [Google Scholar]
  45. Vollmer S. J., Yanofsky C. Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4869–4873. doi: 10.1073/pnas.83.13.4869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ward M. P., Gimeno C. J., Fink G. R., Garrett S. SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol. 1995 Dec;15(12):6854–6863. doi: 10.1128/mcb.15.12.6854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wilson R. B., Tatchell K. SRA5 encodes the low-Km cyclic AMP phosphodiesterase of Saccharomyces cerevisiae. Mol Cell Biol. 1988 Jan;8(1):505–510. doi: 10.1128/mcb.8.1.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Xu J. R., Hamer J. E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 1996 Nov 1;10(21):2696–2706. doi: 10.1101/gad.10.21.2696. [DOI] [PubMed] [Google Scholar]
  49. Zaremberg V., Moreno S. Analysis of the mechanism of activation of cAMP-dependent protein kinase through the study of mutants of the yeast regulatory subunit. Eur J Biochem. 1996 Apr 1;237(1):136–142. doi: 10.1111/j.1432-1033.1996.0136n.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES