Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1998 Sep;10(9):1479–1487. doi: 10.1105/tpc.10.9.1479

Phytochrome E influences internode elongation and flowering time in Arabidopsis.

P F Devlin 1, S R Patel 1, G C Whitelam 1
PMCID: PMC144080  PMID: 9724694

Abstract

From a screen of M2 seedlings derived from gamma-mutagenesis of seeds doubly null for phytochromes phyA and phyB, we isolated a mutant lacking phyE. The PHYE gene of the selected mutant, phyE-1, was found to contain a 1-bp deletion at a position equivalent to codon 726, which is predicted to result in a premature stop at codon 739. Immunoblot analysis showed that the phyE protein was undetectable in the phyE-1 mutant. In the phyA- and phyB-deficient background, phyE deficiency led to early flowering, elongation of internodes between adjacent rosette leaves, and reduced petiole elongation. This is a phenocopy of the response of phyA phyB seedlings to end-of-day far-red light treatments. Furthermore, a phyE deficiency attenuated the responses of phyA phyB seedlings to end-of-day far-red light treatments. Monogenic phyE mutants were indistinguishable from wild-type seedlings. However, phyB phyE double mutants flowered earlier and had longer petioles than did phyB mutants. The elongation and flowering responses conferred by phyE deficiency are typical of shade avoidance responses to the low red/far-red ratio. We conclude that in conjunction with phyB and to a lesser extent with phyD, phyE functions in the regulation of the shade avoidance syndrome.

Full Text

The Full Text of this article is available as a PDF (234.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aukerman M. J., Hirschfeld M., Wester L., Weaver M., Clack T., Amasino R. M., Sharrock R. A. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell. 1997 Aug;9(8):1317–1326. doi: 10.1105/tpc.9.8.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnes S. A., Quaggio R. B., Whitelam G. C., Chua N. H. fhy1 defines a branch point in phytochrome A signal transduction pathways for gene expression. Plant J. 1996 Dec;10(6):1155–1161. doi: 10.1046/j.1365-313x.1996.10061155.x. [DOI] [PubMed] [Google Scholar]
  3. Clack T., Mathews S., Sharrock R. A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol Biol. 1994 Jun;25(3):413–427. doi: 10.1007/BF00043870. [DOI] [PubMed] [Google Scholar]
  4. Devlin P. F., Halliday K. J., Harberd N. P., Whitelam G. C. The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time. Plant J. 1996 Dec;10(6):1127–1134. doi: 10.1046/j.1365-313x.1996.10061127.x. [DOI] [PubMed] [Google Scholar]
  5. Devlin P. F., Rood S. B., Somers D. E., Quail P. H., Whitelam G. C. Photophysiology of the Elongated Internode (ein) Mutant of Brassica rapa: ein Mutant Lacks a Detectable Phytochrome B-Like Polypeptide. Plant Physiol. 1992 Nov;100(3):1442–1447. doi: 10.1104/pp.100.3.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edwards K., Johnstone C., Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991 Mar 25;19(6):1349–1349. doi: 10.1093/nar/19.6.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goosey L., Palecanda L., Sharrock R. A. Differential patterns of expression of the Arabidopsis PHYB, PHYD, and PHYE phytochrome genes. Plant Physiol. 1997 Nov;115(3):959–969. doi: 10.1104/pp.115.3.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Halliday K. J., Koornneef M., Whitelam G. C. Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio. Plant Physiol. 1994 Apr;104(4):1311–1315. doi: 10.1104/pp.104.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirschfeld M., Tepperman J. M., Clack T., Quail P. H., Sharrock R. A. Coordination of phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific monoclonal antibodies. Genetics. 1998 Jun;149(2):523–535. doi: 10.1093/genetics/149.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson E., Bradley M., Harberd N. P., Whitelam G. C. Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions). Plant Physiol. 1994 May;105(1):141–149. doi: 10.1104/pp.105.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koornneef M., Hanhart C. J., van der Veen J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet. 1991 Sep;229(1):57–66. doi: 10.1007/BF00264213. [DOI] [PubMed] [Google Scholar]
  12. Nagatani A., Reed J. W., Chory J. Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol. 1993 May;102(1):269–277. doi: 10.1104/pp.102.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Parks B. M., Quail P. H. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell. 1993 Jan;5(1):39–48. doi: 10.1105/tpc.5.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robson PRH., Whitelam G. C., Smith H. Selected Components of the Shade-Avoidance Syndrome Are Displayed in a Normal Manner in Mutants of Arabidopsis thaliana and Brassica rapa Deficient in Phytochrome B. Plant Physiol. 1993 Aug;102(4):1179–1184. doi: 10.1104/pp.102.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sharrock R. A., Quail P. H. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 1989 Nov;3(11):1745–1757. doi: 10.1101/gad.3.11.1745. [DOI] [PubMed] [Google Scholar]
  17. Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Whitelam G. C., Johnson E., Peng J., Carol P., Anderson M. L., Cowl J. S., Harberd N. P. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757–768. doi: 10.1105/tpc.5.7.757. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES