Abstract
Salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidase (AOX), blocks salicylic acid-induced resistance to tobacco mosaic virus (TMV) but does not inhibit pathogenesis-related PR-1 protein synthesis or resistance to fungal and bacterial pathogens. We found that the synthetic resistance-inducing chemical 2, 6-dichloroisonicotinic acid also induced Aox transcript accumulation and SHAM-sensitive resistance to TMV. The respiratory inhibitors antimycin A and KCN also induced Aox transcript accumulation and resistance to TMV but did not induce PR-1 accumulation. Tobacco plants of the TMV-resistant cultivar Samsun NN transformed with the salicylic acid hydroxylase (nahG) gene could no longer restrict virus to the inoculation site, resulting in spreading necrosis instead of discrete necrotic lesions. Treatment with KCN restored TMV localization and normal lesion morphology. SHAM antagonized this effect, allowing virus escape and spreading necrosis to resume. The results demonstrate the importance of the SHAM-sensitive (potentially AOX-dependent) signal transduction pathway in mediating virus localization early in the hypersensitive response.
Full Text
The Full Text of this article is available as a PDF (328.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker B., Zambryski P., Staskawicz B., Dinesh-Kumar S. P. Signaling in plant-microbe interactions. Science. 1997 May 2;276(5313):726–733. doi: 10.1126/science.276.5313.726. [DOI] [PubMed] [Google Scholar]
- Berry J. O., Nikolau B. J., Carr J. P., Klessig D. F. Transcriptional and post-transcriptional regulation of ribulose 1,5-bisphosphate carboxylase gene expression in light- and dark-grown amaranth cotyledons. Mol Cell Biol. 1985 Sep;5(9):2238–2246. doi: 10.1128/mcb.5.9.2238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bi Y. M., Kenton P., Mur L., Darby R., Draper J. Hydrogen peroxide does not function downstream of salicylic acid in the induction of PR protein expression. Plant J. 1995 Aug;8(2):235–245. doi: 10.1046/j.1365-313x.1995.08020235.x. [DOI] [PubMed] [Google Scholar]
- Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
- Carr J. P., Dixon D. C., Nikolau B. J., Voelkerding K. V., Klessig D. F. Synthesis and localization of pathogenesis-related proteins in tobacco. Mol Cell Biol. 1987 Apr;7(4):1580–1583. doi: 10.1128/mcb.7.4.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chivasa S., Murphy A. M., Naylor M., Carr J. P. Salicylic Acid Interferes with Tobacco Mosaic Virus Replication via a Novel Salicylhydroxamic Acid-Sensitive Mechanism. Plant Cell. 1997 Apr;9(4):547–557. doi: 10.1105/tpc.9.4.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delaney T. P., Uknes S., Vernooij B., Friedrich L., Weymann K., Negrotto D., Gaffney T., Gut-Rella M., Kessmann H., Ward E., Ryals J. A central role of salicylic Acid in plant disease resistance. Science. 1994 Nov 18;266(5188):1247–1250. doi: 10.1126/science.266.5188.1247. [DOI] [PubMed] [Google Scholar]
- Lennon A. M., Neuenschwander U. H., Ribas-Carbo M., Giles L., Ryals J. A., Siedow J. N. The Effects of Salicylic Acid and Tobacco Mosaic Virus Infection on the Alternative Oxidase of Tobacco. Plant Physiol. 1997 Oct;115(2):783–791. doi: 10.1104/pp.115.2.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malamy J., Carr J. P., Klessig D. F., Raskin I. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 1990 Nov 16;250(4983):1002–1004. doi: 10.1126/science.250.4983.1002. [DOI] [PubMed] [Google Scholar]
- McIntosh L. Molecular biology of the alternative oxidase. Plant Physiol. 1994 Jul;105(3):781–786. doi: 10.1104/pp.105.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millar A. H., Wiskich J. T., Whelan J., Day D. A. Organic acid activation of the alternative oxidase of plant mitochondria. FEBS Lett. 1993 Aug 30;329(3):259–262. doi: 10.1016/0014-5793(93)80233-k. [DOI] [PubMed] [Google Scholar]
- Mittler R., Shulaev V., Seskar M., Lam E. Inhibition of Programmed Cell Death in Tobacco Plants during a Pathogen-Induced Hypersensitive Response at Low Oxygen Pressure. Plant Cell. 1996 Nov;8(11):1991–2001. doi: 10.1105/tpc.8.11.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mur L. A., Bi Y. M., Darby R. M., Firek S., Draper J. Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in TMV-infected tobacco. Plant J. 1997 Nov;12(5):1113–1126. doi: 10.1046/j.1365-313x.1997.12051113.x. [DOI] [PubMed] [Google Scholar]
- ROSS A. F. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology. 1961 Jul;14:329–339. doi: 10.1016/0042-6822(61)90318-x. [DOI] [PubMed] [Google Scholar]
- ROSS A. F. Systemic acquired resistance induced by localized virus infections in plants. Virology. 1961 Jul;14:340–358. doi: 10.1016/0042-6822(61)90319-1. [DOI] [PubMed] [Google Scholar]
- Ryals J. A., Neuenschwander U. H., Willits M. G., Molina A., Steiner H. Y., Hunt M. D. Systemic Acquired Resistance. Plant Cell. 1996 Oct;8(10):1809–1819. doi: 10.1105/tpc.8.10.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryals J., Lawton K. A., Delaney T. P., Friedrich L., Kessmann H., Neuenschwander U., Uknes S., Vernooij B., Weymann K. Signal transduction in systemic acquired resistance. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4202–4205. doi: 10.1073/pnas.92.10.4202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staskawicz B. J., Ausubel F. M., Baker B. J., Ellis J. G., Jones J. D. Molecular genetics of plant disease resistance. Science. 1995 May 5;268(5211):661–667. doi: 10.1126/science.7732374. [DOI] [PubMed] [Google Scholar]
- Vanlerberghe G. C., Day D. A., Wiskich J. T., Vanlerberghe A. E., McIntosh L. Alternative Oxidase Activity in Tobacco Leaf Mitochondria (Dependence on Tricarboxylic Acid Cycle-Mediated Redox Regulation and Pyruvate Activation). Plant Physiol. 1995 Oct;109(2):353–361. doi: 10.1104/pp.109.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanlerberghe G. C., McIntosh L. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco. Plant Physiol. 1992 Dec;100(4):1846–1851. doi: 10.1104/pp.100.4.1846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanlerberghe G. C., Vanlerberghe A. E., McIntosh L. Molecular Genetic Alteration of Plant Respiration (Silencing and Overexpression of Alternative Oxidase in Transgenic Tobacco). Plant Physiol. 1994 Dec;106(4):1503–1510. doi: 10.1104/pp.106.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEINTRAUB M., KEMP W. G., RAGETLI H. W. Studies on the metabolism of leaves with localized virus infections. I. Oxygen uptake. Can J Microbiol. 1960 Aug;6:407–415. doi: 10.1139/m60-046. [DOI] [PubMed] [Google Scholar]
- Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whitham S., Dinesh-Kumar S. P., Choi D., Hehl R., Corr C., Baker B. The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell. 1994 Sep 23;78(6):1101–1115. doi: 10.1016/0092-8674(94)90283-6. [DOI] [PubMed] [Google Scholar]
- Woods M. W. REVERSIBLE INHIBITION OF TOBACCO MOSAIC VIRUS IN LIVING CELLS WITH 0.0002 MOLAR SODIUM CYANIDE. Science. 1940 Mar 22;91(2360):295–296. doi: 10.1126/science.91.2360.295. [DOI] [PubMed] [Google Scholar]