Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jan;11(1):5–14. doi: 10.1105/tpc.11.1.5

A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway.

D A Selinger 1, V L Chandler 1
PMCID: PMC144086  PMID: 9878628

Abstract

By screening for new seed color mutations, we have identified a new gene, pale aleurone color1 (pac1), which when mutated causes a reduction in anthocyanin pigmentation. The pac1 gene is not allelic to any known anthocyanin biosynthetic or regulatory gene. The pac1-ref allele is recessive, nonlethal, and only reduces pigment in kernels, not in vegetative tissues. Genetic and molecular evidence shows that the pac1-ref allele reduces pigmentation by reducing RNA levels of the biosynthetic genes in the pathway. The mutant does not reduce the RNA levels of either of the two regulatory genes, b and c1. Introduction of an anthocyanin structural gene promoter (a1) driving a reporter gene into maize aleurones shows that pac1-ref kernels have reduced expression resulting from the action of the a1 promoter. Introduction of the reporter gene with constructs that express the regulatory genes b and c1 or the phlobaphene pathway regulator p shows that this reduction in a1-driven expression occurs in both the presence and absence of these regulators. Our results imply that pac1 is required for either b/c1 or p activation of anthocyanin biosynthetic gene expression and that pac1 acts independently of these regulatory genes.

Full Text

The Full Text of this article is available as a PDF (252.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chandler V. L., Radicella J. P., Robbins T. P., Chen J., Turks D. Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences. Plant Cell. 1989 Dec;1(12):1175–1183. doi: 10.1105/tpc.1.12.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chandler V. L., Walbot V. DNA modification of a maize transposable element correlates with loss of activity. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1767–1771. doi: 10.1073/pnas.83.6.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cone K. C., Cocciolone S. M., Burr F. A., Burr B. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant. Plant Cell. 1993 Dec;5(12):1795–1805. doi: 10.1105/tpc.5.12.1795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goff S. A., Cone K. C., Chandler V. L. Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins. Genes Dev. 1992 May;6(5):864–875. doi: 10.1101/gad.6.5.864. [DOI] [PubMed] [Google Scholar]
  5. Goff S. A., Klein T. M., Roth B. A., Fromm M. E., Cone K. C., Radicella J. P., Chandler V. L. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 1990 Aug;9(8):2517–2522. doi: 10.1002/j.1460-2075.1990.tb07431.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Grotewold E., Drummond B. J., Bowen B., Peterson T. The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell. 1994 Feb 11;76(3):543–553. doi: 10.1016/0092-8674(94)90117-1. [DOI] [PubMed] [Google Scholar]
  7. Hanson M. A., Gaut B. S., Stec A. O., Fuerstenberg S. I., Goodman M. M., Coe E. H., Doebley J. F. Evolution of anthocyanin biosynthesis in maize kernels: the role of regulatory and enzymatic loci. Genetics. 1996 Jul;143(3):1395–1407. doi: 10.1093/genetics/143.3.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hattori T., Vasil V., Rosenkrans L., Hannah L. C., McCarty D. R., Vasil I. K. The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 1992 Apr;6(4):609–618. doi: 10.1101/gad.6.4.609. [DOI] [PubMed] [Google Scholar]
  9. Hollick J. B., Patterson G. I., Coe E. H., Jr, Cone K. C., Chandler V. L. Allelic interactions heritably alter the activity of a metastable maize pl allele. Genetics. 1995 Oct;141(2):709–719. doi: 10.1093/genetics/141.2.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holton T. A., Cornish E. C. Genetics and Biochemistry of Anthocyanin Biosynthesis. Plant Cell. 1995 Jul;7(7):1071–1083. doi: 10.1105/tpc.7.7.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kermicle J. L. Dependence of the R-mottled aleurone phenotype in maize on mode of sexual transmission. Genetics. 1970 Sep;66(1):69–85. doi: 10.1093/genetics/66.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klein T. M., Roth B. A., Fromm M. E. Regulation of anthocyanin biosynthetic genes introduced into intact maize tissues by microprojectiles. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6681–6685. doi: 10.1073/pnas.86.17.6681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Larson R., Bussard J. B., Coe E. H., Jr Gene-dependent flavonoid 3'-hydroxylation in maize. Biochem Genet. 1986 Aug;24(7-8):615–624. doi: 10.1007/BF00504338. [DOI] [PubMed] [Google Scholar]
  14. Lesnick M. L., Chandler V. L. Activation of the maize anthocyanin gene a2 is mediated by an element conserved in many anthocyanin promoters. Plant Physiol. 1998 Jun;117(2):437–445. doi: 10.1104/pp.117.2.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lorenz W. W., McCann R. O., Longiaru M., Cormier M. J. Isolation and expression of a cDNA encoding Renilla reniformis luciferase. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4438–4442. doi: 10.1073/pnas.88.10.4438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ludwig S. R., Bowen B., Beach L., Wessler S. R. A regulatory gene as a novel visible marker for maize transformation. Science. 1990 Jan 26;247(4941):449–450. doi: 10.1126/science.247.4941.449. [DOI] [PubMed] [Google Scholar]
  17. Ludwig S. R., Habera L. F., Dellaporta S. L., Wessler S. R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7092–7096. doi: 10.1073/pnas.86.18.7092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McCarty D. R., Carson C. B., Stinard P. S., Robertson D. S. Molecular Analysis of viviparous-1: An Abscisic Acid-Insensitive Mutant of Maize. Plant Cell. 1989 May;1(5):523–532. doi: 10.1105/tpc.1.5.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Patterson G. I., Harris L. J., Walbot V., Chandler V. L. Genetic analysis of B-Peru, a regulatory gene in maize. Genetics. 1991 Jan;127(1):205–220. doi: 10.1093/genetics/127.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Paz-Ares J., Wienand U., Peterson P. A., Saedler H. Molecular cloning of the c locus of Zea mays: a locus regulating the anthocyanin pathway. EMBO J. 1986 May;5(5):829–833. doi: 10.1002/j.1460-2075.1986.tb04291.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robertson D. S. The Genetics of Vivipary in Maize. Genetics. 1955 Sep;40(5):745–760. doi: 10.1093/genetics/40.5.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sainz M. B., Grotewold E., Chandler V. L. Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell. 1997 Apr;9(4):611–625. doi: 10.1105/tpc.9.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Selinger D. A., Lisch D., Chandler V. L. The maize regulatory gene B-Peru contains a DNA rearrangement that specifies tissue-specific expression through both positive and negative promoter elements. Genetics. 1998 Jun;149(2):1125–1138. doi: 10.1093/genetics/149.2.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tuerck J. A., Fromm M. E. Elements of the maize A1 promoter required for transactivation by the anthocyanin B/C1 or phlobaphene P regulatory genes. Plant Cell. 1994 Nov;6(11):1655–1663. doi: 10.1105/tpc.6.11.1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. de Vetten N., Quattrocchio F., Mol J., Koes R. The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev. 1997 Jun 1;11(11):1422–1434. doi: 10.1101/gad.11.11.1422. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES