Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jan;11(1):15–29. doi: 10.1105/tpc.11.1.15

Overexpression of Pto activates defense responses and confers broad resistance.

X Tang 1, M Xie 1, Y J Kim 1, J Zhou 1, D F Klessig 1, G B Martin 1
PMCID: PMC144088  PMID: 9878629

Abstract

The tomato disease resistance (R) gene Pto specifies race-specific resistance to the bacterial pathogen Pseudomonas syringae pv tomato carrying the avrPto gene. Pto encodes a serine/threonine protein kinase that is postulated to be activated by a physical interaction with the AvrPto protein. Here, we report that overexpression of Pto in tomato activates defense responses in the absence of the Pto-AvrPto interaction. Leaves of three transgenic tomato lines carrying the cauliflower mosaic virus 35S::Pto transgene exhibited microscopic cell death, salicylic acid accumulation, and increased expression of pathogenesis-related genes. Cell death in these plants was limited to palisade mesophyll cells and required light for induction. Mesophyll cells of 35S::Pto plants showed the accumulation of autofluorescent compounds, callose deposition, and lignification. When inoculated with P. s. tomato without avrPto, all three 35S::Pto lines displayed significant resistance and supported less bacterial growth than did nontransgenic lines. Similarly, the 35S::Pto lines also were more resistant to Xanthomonas campestris pv vesicatoria and Cladosporium fulvum. These results demonstrate that defense responses and general resistance can be activated by the overexpression of an R gene.

Full Text

The Full Text of this article is available as a PDF (677.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abad M. S., Hakimi S. M., Kaniewski W. K., Rommens C. M., Shulaev V., Lam E., Shah D. M. Characterization of acquired resistance in lesion-mimic transgenic potato expressing bacterio-opsin. Mol Plant Microbe Interact. 1997 Jul;10(5):635–645. doi: 10.1094/MPMI.1997.10.5.635. [DOI] [PubMed] [Google Scholar]
  2. Baker B., Zambryski P., Staskawicz B., Dinesh-Kumar S. P. Signaling in plant-microbe interactions. Science. 1997 May 2;276(5313):726–733. doi: 10.1126/science.276.5313.726. [DOI] [PubMed] [Google Scholar]
  3. Botella M. A., Coleman M. J., Hughes D. E., Nishimura M. T., Jones J. D., Somerville S. C. Map positions of 47 Arabidopsis sequences with sequence similarity to disease resistance genes. Plant J. 1997 Nov;12(5):1197–1211. doi: 10.1046/j.1365-313x.1997.12051197.x. [DOI] [PubMed] [Google Scholar]
  4. Bowling S. A., Clarke J. D., Liu Y., Klessig D. F., Dong X. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell. 1997 Sep;9(9):1573–1584. doi: 10.1105/tpc.9.9.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowling S. A., Guo A., Cao H., Gordon A. S., Klessig D. F., Dong X. A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell. 1994 Dec;6(12):1845–1857. doi: 10.1105/tpc.6.12.1845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Büschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A., van Daelen R., van der Lee T., Diergaarde P., Groenendijk J. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 1997 Mar 7;88(5):695–705. doi: 10.1016/s0092-8674(00)81912-1. [DOI] [PubMed] [Google Scholar]
  7. Chamnongpol S., Willekens H., Moeder W., Langebartels C., Sandermann H., Jr, Van Montagu M., Inzé D., Van Camp W. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5818–5823. doi: 10.1073/pnas.95.10.5818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen Z., Silva H., Klessig D. F. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993 Dec 17;262(5141):1883–1886. doi: 10.1126/science.8266079. [DOI] [PubMed] [Google Scholar]
  9. Dangl J. L., Dietrich R. A., Richberg M. H. Death Don't Have No Mercy: Cell Death Programs in Plant-Microbe Interactions. Plant Cell. 1996 Oct;8(10):1793–1807. doi: 10.1105/tpc.8.10.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Danhash N., Wagemakers C. A., van Kan J. A., de Wit P. J. Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato. Plant Mol Biol. 1993 Sep;22(6):1017–1029. doi: 10.1007/BF00028974. [DOI] [PubMed] [Google Scholar]
  11. Dietrich R. A., Delaney T. P., Uknes S. J., Ward E. R., Ryals J. A., Dangl J. L. Arabidopsis mutants simulating disease resistance response. Cell. 1994 May 20;77(4):565–577. doi: 10.1016/0092-8674(94)90218-6. [DOI] [PubMed] [Google Scholar]
  12. Dietrich R. A., Richberg M. H., Schmidt R., Dean C., Dangl J. L. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell. 1997 Mar 7;88(5):685–694. doi: 10.1016/s0092-8674(00)81911-x. [DOI] [PubMed] [Google Scholar]
  13. Durner J., Klessig D. F. Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11312–11316. doi: 10.1073/pnas.92.24.11312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gray J., Close P. S., Briggs S. P., Johal G. S. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell. 1997 Apr 4;89(1):25–31. doi: 10.1016/s0092-8674(00)80179-8. [DOI] [PubMed] [Google Scholar]
  15. Greenberg J. T., Guo A., Klessig D. F., Ausubel F. M. Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell. 1994 May 20;77(4):551–563. doi: 10.1016/0092-8674(94)90217-8. [DOI] [PubMed] [Google Scholar]
  16. Hammond-Kosack K. E., Jones J. D. Resistance gene-dependent plant defense responses. Plant Cell. 1996 Oct;8(10):1773–1791. doi: 10.1105/tpc.8.10.1773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Herbers K., Meuwly P., Frommer W. B., Metraux J. P., Sonnewald U. Systemic Acquired Resistance Mediated by the Ectopic Expression of Invertase: Possible Hexose Sensing in the Secretory Pathway. Plant Cell. 1996 May;8(5):793–803. doi: 10.1105/tpc.8.5.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoisington D. A., Neuffer M. G., Walbot V. Disease lesion mimics in maize. I. Effect of genetic background, temperature, developmental age, and wounding on necrotic spot formation with Les1. Dev Biol. 1982 Oct;93(2):381–388. doi: 10.1016/0012-1606(82)90125-7. [DOI] [PubMed] [Google Scholar]
  19. Hu G., Richter T. E., Hulbert S. H., Pryor T. Disease Lesion Mimicry Caused by Mutations in the Rust Resistance Gene rp1. Plant Cell. 1996 Aug;8(8):1367–1376. doi: 10.1105/tpc.8.8.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
  21. Jabs T., Dietrich R. A., Dangl J. L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science. 1996 Sep 27;273(5283):1853–1856. doi: 10.1126/science.273.5283.1853. [DOI] [PubMed] [Google Scholar]
  22. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jia Y., Loh Y. T., Zhou J., Martin G. B. Alleles of Pto and Fen occur in bacterial speck-susceptible and fenthion-insensitive tomato cultivars and encode active protein kinases. Plant Cell. 1997 Jan;9(1):61–73. doi: 10.1105/tpc.9.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
  25. Loh Y. T., Martin G. B. The Pto bacterial resistance gene and the Fen insecticide sensitivity gene encode functional protein kinases with serine/threonine specificity. Plant Physiol. 1995 Aug;108(4):1735–1739. doi: 10.1104/pp.108.4.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Loh Y. T., Zhou J., Martin G. B. The myristylation motif of Pto is not required for disease resistance. Mol Plant Microbe Interact. 1998 Jun;11(6):572–576. doi: 10.1094/MPMI.1998.11.6.572. [DOI] [PubMed] [Google Scholar]
  27. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
  28. Meinke D. W. Perspectives on Genetic Analysis of Plant Embryogenesis. Plant Cell. 1991 Sep;3(9):857–866. doi: 10.1105/tpc.3.9.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mittler R., Feng X., Cohen M. Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell. 1998 Mar;10(3):461–473. doi: 10.1105/tpc.10.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mittler R., Shulaev V., Lam E. Coordinated Activation of Programmed Cell Death and Defense Mechanisms in Transgenic Tobacco Plants Expressing a Bacterial Proton Pump. Plant Cell. 1995 Jan;7(1):29–42. doi: 10.1105/tpc.7.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Oldroyd G. E., Staskawicz B. J. Genetically engineered broad-spectrum disease resistance in tomato. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):10300–10305. doi: 10.1073/pnas.95.17.10300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pieterse C. M., van Wees S. C., Hoffland E., van Pelt J. A., van Loon L. C. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell. 1996 Aug;8(8):1225–1237. doi: 10.1105/tpc.8.8.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Richter T. E., Pryor T. J., Bennetzen J. L., Hulbert S. H. New rust resistance specificities associated with recombination in the Rp1 complex in maize. Genetics. 1995 Sep;141(1):373–381. doi: 10.1093/genetics/141.1.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ronald P. C., Salmeron J. M., Carland F. M., Staskawicz B. J. The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. J Bacteriol. 1992 Mar;174(5):1604–1611. doi: 10.1128/jb.174.5.1604-1611.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ryals J. A., Neuenschwander U. H., Willits M. G., Molina A., Steiner H. Y., Hunt M. D. Systemic Acquired Resistance. Plant Cell. 1996 Oct;8(10):1809–1819. doi: 10.1105/tpc.8.10.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sano H., Seo S., Orudgev E., Youssefian S., Ishizuka K. Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10556–10560. doi: 10.1073/pnas.91.22.10556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW, Staskawicz BJ. Molecular Basis of Gene-for-Gene Specificity in Bacterial Speck Disease of Tomato. Science. 1996 Dec 20;274(5295):2063–2065. doi: 10.1126/science.274.5295.2063. [DOI] [PubMed] [Google Scholar]
  38. Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X., Zhu L. H. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995 Dec 15;270(5243):1804–1806. doi: 10.1126/science.270.5243.1804. [DOI] [PubMed] [Google Scholar]
  39. Staskawicz B. J., Ausubel F. M., Baker B. J., Ellis J. G., Jones J. D. Molecular genetics of plant disease resistance. Science. 1995 May 5;268(5211):661–667. doi: 10.1126/science.7732374. [DOI] [PubMed] [Google Scholar]
  40. Takahashi H., Chen Z., Du H., Liu Y., Klessig D. F. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant J. 1997 May;11(5):993–1005. doi: 10.1046/j.1365-313x.1997.11050993.x. [DOI] [PubMed] [Google Scholar]
  41. Tang X., Gomes AMTR., Bhatia A., Woodson W. R. Pistil-Specific and Ethylene-Regulated Expression of 1-Aminocyclopropane-1-Carboxylate Oxidase Genes in Petunia Flowers. Plant Cell. 1994 Sep;6(9):1227–1239. doi: 10.1105/tpc.6.9.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB. Initiation of Plant Disease Resistance by Physical Interaction of AvrPto and Pto Kinase. Science. 1996 Dec 20;274(5295):2060–2063. doi: 10.1126/science.274.5295.2060. [DOI] [PubMed] [Google Scholar]
  43. Tornero P., Conejero V., Vera P. A gene encoding a novel isoform of the PR-1 protein family from tomato is induced upon viroid infection. Mol Gen Genet. 1994 Apr;243(1):47–53. doi: 10.1007/BF00283875. [DOI] [PubMed] [Google Scholar]
  44. Tornero P., Gadea J., Conejero V., Vera P. Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Mol Plant Microbe Interact. 1997 Jul;10(5):624–634. doi: 10.1094/MPMI.1997.10.5.624. [DOI] [PubMed] [Google Scholar]
  45. Wolter M., Hollricher K., Salamini F., Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet. 1993 May;239(1-2):122–128. doi: 10.1007/BF00281610. [DOI] [PubMed] [Google Scholar]
  46. Yu I. C., Parker J., Bent A. F. Gene-for-gene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7819–7824. doi: 10.1073/pnas.95.13.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zhou J., Loh Y. T., Bressan R. A., Martin G. B. The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell. 1995 Dec 15;83(6):925–935. doi: 10.1016/0092-8674(95)90208-2. [DOI] [PubMed] [Google Scholar]
  48. Zhou J., Tang X., Martin G. B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes. EMBO J. 1997 Jun 2;16(11):3207–3218. doi: 10.1093/emboj/16.11.3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. van Kan J. A., Joosten M. H., Wagemakers C. A., van den Berg-Velthuis G. C., de Wit P. J. Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Mol Biol. 1992 Nov;20(3):513–527. doi: 10.1007/BF00040610. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES