Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jan;11(1):43–55. doi: 10.1105/tpc.11.1.43

The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis.

D Wu 1, D A Wright 1, C Wetzel 1, D F Voytas 1, S Rodermel 1
PMCID: PMC144093  PMID: 9878631

Abstract

Nuclear gene-induced variegation mutants provide a powerful system to dissect interactions between the genetic systems of the nucleus-cytoplasm, the chloroplast, and the mitochondrion. The immutans (im) variegation mutation of Arabidopsis is nuclear and recessive and results in the production of green- and white-sectored leaves. The green sectors contain cells with normal chloroplasts, whereas the white sectors are heteroplastidic and contain cells with abnormal, pigment-deficient plastids as well as some normal chloroplasts. White sector formation can be promoted by enhanced light intensities, but sectoring becomes irreversible early in leaf development. The white sectors accumulate the carotenoid precursor phytoene. We have positionally cloned IM and found that the gene encodes a 40.5-kD protein with sequence motifs characteristic of alternative oxidase, a mitochondrial protein that functions as a terminal oxidase in the respiratory chains of all plants. However, phylogenetic analyses revealed that the IM protein is only distantly related to these other alternative oxidases, suggesting that IM is a novel member of this protein class. We sequenced three alleles of im, and all are predicted to be null. Our data suggest a model of variegation in which the IM protein functions early in chloroplast biogenesis as a component of a redox chain responsible for phytoene desaturation but that a redundant electron transfer function is capable of compensating for IM activity in some plastids and cells.

Full Text

The Full Text of this article is available as a PDF (195.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Babili S., von Lintig J., Haubruck H., Beyer P. A novel, soluble form of phytoene desaturase from Narcissus pseudonarcissus chromoplasts is Hsp70-complexed and competent for flavinylation, membrane association and enzymatic activation. Plant J. 1996 May;9(5):601–612. doi: 10.1046/j.1365-313x.1996.9050601.x. [DOI] [PubMed] [Google Scholar]
  2. Bartley G. E., Viitanen P. V., Pecker I., Chamovitz D., Hirschberg J., Scolnik P. A. Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6532–6536. doi: 10.1073/pnas.88.15.6532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  4. Beyer P., Mayer M., Kleinig H. Molecular oxygen and the state of geometric isomerism of intermediates are essential in the carotene desaturation and cyclization reactions in daffodil chromoplasts. Eur J Biochem. 1989 Sep 1;184(1):141–150. doi: 10.1111/j.1432-1033.1989.tb15000.x. [DOI] [PubMed] [Google Scholar]
  5. Bonk M., Tadros M., Vandekerckhove J., Al-Babili S., Beyer P. Purification and characterization of chaperonin 60 and heat-shock protein 70 from chromoplasts of Narcissus pseudonarcissus. Plant Physiol. 1996 Jul;111(3):931–939. doi: 10.1104/pp.111.3.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brendel V., Kleffe J., Carle-Urioste J. C., Walbot V. Prediction of splice sites in plant pre-mRNA from sequence properties. J Mol Biol. 1998 Feb 13;276(1):85–104. doi: 10.1006/jmbi.1997.1523. [DOI] [PubMed] [Google Scholar]
  7. Burrows P. A., Sazanov L. A., Svab Z., Maliga P., Nixon P. J. Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J. 1998 Feb 16;17(4):868–876. doi: 10.1093/emboj/17.4.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carol P., Stevenson D., Bisanz C., Breitenbach J., Sandmann G., Mache R., Coupland G., Kuntz M. Mutations in the Arabidopsis gene IMMUTANS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell. 1999 Jan;11(1):57–68. doi: 10.1105/tpc.11.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cline K., Henry R. Import and routing of nucleus-encoded chloroplast proteins. Annu Rev Cell Dev Biol. 1996;12:1–26. doi: 10.1146/annurev.cellbio.12.1.1. [DOI] [PubMed] [Google Scholar]
  10. Creusot F., Fouilloux E., Dron M., Lafleuriel J., Picard G., Billault A., Le Paslier D., Cohen D., Chabouté M. E., Durr A. The CIC library: a large insert YAC library for genome mapping in Arabidopsis thaliana. Plant J. 1995 Nov;8(5):763–770. doi: 10.1046/j.1365-313x.1995.08050763.x. [DOI] [PubMed] [Google Scholar]
  11. Cunningham F. X., Gantt E. GENES AND ENZYMES OF CAROTENOID BIOSYNTHESIS IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):557–583. doi: 10.1146/annurev.arplant.49.1.557. [DOI] [PubMed] [Google Scholar]
  12. Demmig-Adams B., Gilmore A. M., Adams W. W., 3rd Carotenoids 3: in vivo function of carotenoids in higher plants. FASEB J. 1996 Mar;10(4):403–412. doi: 10.1096/fasebj.10.4.8647339. [DOI] [PubMed] [Google Scholar]
  13. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feild TS, Nedbal L, Ort DR. Nonphotochemical reduction of the plastoquinone pool in sunflower leaves originates from chlororespiration . Plant Physiol. 1998 Apr;116(4):1209–1218. doi: 10.1104/pp.116.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Giuliano G., Bartley G. E., Scolnik P. A. Regulation of carotenoid biosynthesis during tomato development. Plant Cell. 1993 Apr;5(4):379–387. doi: 10.1105/tpc.5.4.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grill E., Somerville C. Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking. Mol Gen Genet. 1991 May;226(3):484–490. doi: 10.1007/BF00260662. [DOI] [PubMed] [Google Scholar]
  17. Gu J., Miles D., Newton K. J. Analysis of Leaf Sectors in the NCS6 Mitochondrial Mutant of Maize. Plant Cell. 1993 Aug;5(8):963–971. doi: 10.1105/tpc.5.8.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hagberg L., Hull R., Hull S., Falkow S., Freter R., Svanborg Edén C. Contribution of adhesion to bacterial persistence in the mouse urinary tract. Infect Immun. 1983 Apr;40(1):265–272. doi: 10.1128/iai.40.1.265-272.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Han C. D., Coe E. H., Jr, Martienssen R. A. Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J. 1992 Nov;11(11):4037–4046. doi: 10.1002/j.1460-2075.1992.tb05497.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hess W. R., Müller A., Nagy F., Börner T. Ribosome-deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. Mol Gen Genet. 1994 Feb;242(3):305–312. doi: 10.1007/BF00280420. [DOI] [PubMed] [Google Scholar]
  21. Hoefnagel M. H., Millar A. H., Wiskich J. T., Day D. A. Cytochrome and alternative respiratory pathways compete for electrons in the presence of pyruvate in soybean mitochondria. Arch Biochem Biophys. 1995 Apr 20;318(2):394–400. doi: 10.1006/abbi.1995.1245. [DOI] [PubMed] [Google Scholar]
  22. Hugueney P., Römer S., Kuntz M., Camara B. Characterization and molecular cloning of a flavoprotein catalyzing the synthesis of phytofluene and zeta-carotene in Capsicum chromoplasts. Eur J Biochem. 1992 Oct 1;209(1):399–407. doi: 10.1111/j.1432-1033.1992.tb17302.x. [DOI] [PubMed] [Google Scholar]
  23. Jäger-Vottero P., Dorne A. J., Jordanov J., Douce R., Joyard J. Redox chains in chloroplast envelope membranes: spectroscopic evidence for the presence of electron carriers, including iron-sulfur centers. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1597–1602. doi: 10.1073/pnas.94.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kofer W., Koop H. U., Wanner G., Steinmüller K. Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet. 1998 Apr;258(1-2):166–173. doi: 10.1007/s004380050719. [DOI] [PubMed] [Google Scholar]
  25. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  26. Kumar A. M., Söll D. Arabidopsis alternative oxidase sustains Escherichia coli respiration. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10842–10846. doi: 10.1073/pnas.89.22.10842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lauer M., Knudsen C., Newton K. J., Gabay-Laughnan S., Laughnan J. R. A partially deleted mitochondrial cytochrome oxidase gene in the NCS6 abnormal growth mutant of maize. New Biol. 1990 Feb;2(2):179–186. [PubMed] [Google Scholar]
  28. Martínez-Zapater J. M., Gil P., Capel J., Somerville C. R. Mutations at the Arabidopsis CHM locus promote rearrangements of the mitochondrial genome. Plant Cell. 1992 Aug;4(8):889–899. doi: 10.1105/tpc.4.8.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mayer M. P., Beyer P., Kleinig H. Quinone compounds are able to replace molecular oxygen as terminal electron acceptor in phytoene desaturation in chromoplasts of Narcissus pseudonarcissus L. Eur J Biochem. 1990 Jul 31;191(2):359–363. doi: 10.1111/j.1432-1033.1990.tb19130.x. [DOI] [PubMed] [Google Scholar]
  30. Meehan L., Harkins K., Chory J., Rodermel S. Lhcb Transcription Is Coordinated with Cell Size and Chlorophyll Accumulation (Studies on Fluorescence-Activated, Cell-Sorter-Purified Single Cells from Wild-Type and immutans Arabidopsis thaliana). Plant Physiol. 1996 Nov;112(3):953–963. doi: 10.1104/pp.112.3.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mindrinos M., Katagiri F., Yu G. L., Ausubel F. M. The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell. 1994 Sep 23;78(6):1089–1099. doi: 10.1016/0092-8674(94)90282-8. [DOI] [PubMed] [Google Scholar]
  32. Moore A. L., Umbach A. L., Siedow J. N. Structure-function relationships of the alternative oxidase of plant mitochondria: a model of the active site. J Bioenerg Biomembr. 1995 Aug;27(4):367–377. doi: 10.1007/BF02109999. [DOI] [PubMed] [Google Scholar]
  33. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Newman T., de Bruijn F. J., Green P., Keegstra K., Kende H., McIntosh L., Ohlrogge J., Raikhel N., Somerville S., Thomashow M. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. doi: 10.1104/pp.106.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nievelstein V., Vandekerchove J., Tadros M. H., Lintig J. V., Nitschke W., Beyer P. Carotene desaturation is linked to a respiratory redox pathway in Narcissus pseudonarcissus chromoplast membranes. Involvement of a 23-kDa oxygen-evolving-complex-like protein. Eur J Biochem. 1995 Nov 1;233(3):864–872. doi: 10.1111/j.1432-1033.1995.864_3.x. [DOI] [PubMed] [Google Scholar]
  36. Norris S. R., Barrette T. R., DellaPenna D. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell. 1995 Dec;7(12):2139–2149. doi: 10.1105/tpc.7.12.2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Olszewski N. E., Martin F. B., Ausubel F. M. Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Nucleic Acids Res. 1988 Nov 25;16(22):10765–10782. doi: 10.1093/nar/16.22.10765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ribas-Carbo M., Berry J. A., Yakir D., Giles L., Robinson S. A., Lennon A. M., Siedow J. N. Electron Partitioning between the Cytochrome and Alternative Pathways in Plant Mitochondria. Plant Physiol. 1995 Nov;109(3):829–837. doi: 10.1104/pp.109.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rost B., Casadio R., Fariselli P., Sander C. Transmembrane helices predicted at 95% accuracy. Protein Sci. 1995 Mar;4(3):521–533. doi: 10.1002/pro.5560040318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Roussell D. L., Thompson D. L., Pallardy S. G., Miles D., Newton K. J. Chloroplast Structure and Function Is Altered in the NCS2 Maize Mitochondrial Mutant. Plant Physiol. 1991 May;96(1):232–238. doi: 10.1104/pp.96.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rédei G. P. Arabidopsis as a genetic tool. Annu Rev Genet. 1975;9:111–127. doi: 10.1146/annurev.ge.09.120175.000551. [DOI] [PubMed] [Google Scholar]
  42. Rédei G. P. Biochemical aspects of a genetically determined variegation in Arabidopsis. Genetics. 1967 Jul;56(3):431–443. doi: 10.1093/genetics/56.3.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rédei G. P. Somatic Instability Caused by a Cysteine-Sensitive Gene in Arabidopsis. Science. 1963 Feb 22;139(3556):767–769. doi: 10.1126/science.139.3556.767. [DOI] [PubMed] [Google Scholar]
  44. Saisho D., Nambara E., Naito S., Tsutsumi N., Hirai A., Nakazono M. Characterization of the gene family for alternative oxidase from Arabidopsis thaliana. Plant Mol Biol. 1997 Nov;35(5):585–596. doi: 10.1023/a:1005818507743. [DOI] [PubMed] [Google Scholar]
  45. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  46. Sakamoto W., Kondo H., Murata M., Motoyoshi F. Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. Plant Cell. 1996 Aug;8(8):1377–1390. doi: 10.1105/tpc.8.8.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Schmidt R., West J., Cnops G., Love K., Balestrazzi A., Dean C. Detailed description of four YAC contigs representing 17 Mb of chromosome 4 of Arabidopsis thaliana ecotype Columbia. Plant J. 1996 May;9(5):755–765. doi: 10.1046/j.1365-313x.1996.9050755.x. [DOI] [PubMed] [Google Scholar]
  48. Schulz A., Ort O., Beyer P., Kleinig H. SC-0051, a 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett. 1993 Mar 1;318(2):162–166. doi: 10.1016/0014-5793(93)80013-k. [DOI] [PubMed] [Google Scholar]
  49. Shikanai T., Endo T., Hashimoto T., Yamada Y., Asada K., Yokota A. Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9705–9709. doi: 10.1073/pnas.95.16.9705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Siedow J. N., Umbach A. L., Moore A. L. The active site of the cyanide-resistant oxidase from plant mitochondria contains a binuclear iron center. FEBS Lett. 1995 Mar 27;362(1):10–14. doi: 10.1016/0014-5793(95)00196-g. [DOI] [PubMed] [Google Scholar]
  51. Siedow J. N., Umbach A. L. Plant Mitochondrial Electron Transfer and Molecular Biology. Plant Cell. 1995 Jul;7(7):821–831. doi: 10.1105/tpc.7.7.821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Umbach A. L., Siedow J. N. Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. Plant Physiol. 1993 Nov;103(3):845–854. doi: 10.1104/pp.103.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Umbach A. L., Siedow J. N. The reaction of the soybean cotyledon mitochondrial cyanide-resistant oxidase with sulfhydryl reagents suggests that alpha-keto acid activation involves the formation of a thiohemiacetal. J Biol Chem. 1996 Oct 4;271(40):25019–25026. doi: 10.1074/jbc.271.40.25019. [DOI] [PubMed] [Google Scholar]
  54. Vanlerberghe G. C., Vanlerberghe A. E., McIntosh L. Molecular Genetic Evidence of the Ability of Alternative Oxidase to Support Respiratory Carbon Metabolism. Plant Physiol. 1997 Feb;113(2):657–661. doi: 10.1104/pp.113.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Vanlerberghe Greg C., McIntosh Lee. ALTERNATIVE OXIDASE: From Gene to Function. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):703–734. doi: 10.1146/annurev.arplant.48.1.703. [DOI] [PubMed] [Google Scholar]
  56. Walbot V., Coe E. H. Nuclear gene iojap conditions a programmed change to ribosome-less plastids in Zea mays. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2760–2764. doi: 10.1073/pnas.76.6.2760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Ward E. R., Jen G. C. Isolation of single-copy-sequence clones from a yeast artificial chromosome library of randomly-sheared Arabidopsis thaliana DNA. Plant Mol Biol. 1990 Apr;14(4):561–568. doi: 10.1007/BF00027501. [DOI] [PubMed] [Google Scholar]
  58. Wetzel C. M., Jiang C. Z., Meehan L. J., Voytas D. F., Rodermel S. R. Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J. 1994 Aug;6(2):161–175. doi: 10.1046/j.1365-313x.1994.6020161.x. [DOI] [PubMed] [Google Scholar]
  59. Wetzel C. M., Rodermel S. R. Regulation of phytoene desaturase expression is independent of leaf pigment content in Arabidopsis thaliana. Plant Mol Biol. 1998 Aug;37(6):1045–1053. doi: 10.1023/a:1006021522259. [DOI] [PubMed] [Google Scholar]
  60. Wright D. A., Park S. K., Wu D., Phillips G. J., Rodermel S. R., Voytas D. F. Recovery of YAC-end sequences through complementation of an Escherichia coli pyrF mutation. Nucleic Acids Res. 1997 Jul 1;25(13):2679–2680. doi: 10.1093/nar/25.13.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES