Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jan;11(1):31–42. doi: 10.1105/tpc.11.1.31

Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes.

J S Heslop-Harrison 1, M Murata 1, Y Ogura 1, T Schwarzacher 1, F Motoyoshi 1
PMCID: PMC144094  PMID: 9878630

Abstract

A highly abundant repetitive DNA sequence family of Arabidopsis, AtCon, is composed of 178-bp tandemly repeated units and is located at the centromeres of all five chromosome pairs. Analysis of multiple copies of AtCon showed 95% conservation of nucleotides, with some alternative bases, and revealed two boxes, 30 and 24 bp long, that are 99% conserved. Sequences at the 3' end of these boxes showed similarity to yeast CDEI and human CENP-B DNA-protein binding motifs. When oligonucleotides from less conserved regions of AtCon were hybridized in situ and visualized by using primer extension, they were detected on specific chromosomes. When used for polymerase chain reaction with genomic DNA, single primers or primer pairs oriented in the same direction showed negligible amplification, indicating a head-to-tail repeat unit organization. Most primer pairs facing in opposite directions gave several strong bands corresponding to their positions within AtCon. However, consistent with the primer extension results, some primer pairs showed no amplification, indicating that there are chromosome-specific variants of AtCon. The results are significant because they elucidate the organization, mode of amplification, dispersion, and evolution of one of the major repeated sequence families of Arabidopsis. The evidence presented here suggests that AtCon, like human alpha satellites, plays a role in Arabidopsis centromere organization and function.

Full Text

The Full Text of this article is available as a PDF (616.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aragón-Alcaide L., Miller T., Schwarzacher T., Reader S., Moore G. A cereal centromeric sequence. Chromosoma. 1996 Dec;105(5):261–268. doi: 10.1007/BF02524643. [DOI] [PubMed] [Google Scholar]
  2. Bevan M. Objective: The Complete Sequence of a Plant Genome. Plant Cell. 1997 Apr;9(4):476–478. doi: 10.1105/tpc.9.4.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandes A., Heslop-Harrison J. S., Kamm A., Kubis S., Doudrick R. L., Schmidt T. Comparative analysis of the chromosomal and genomic organization of Ty1-copia-like retrotransposons in pteridophytes, gymnosperms and angiosperms. Plant Mol Biol. 1997 Jan;33(1):11–21. doi: 10.1023/a:1005797222148. [DOI] [PubMed] [Google Scholar]
  4. Brandes A., Thompson H., Dean C., Heslop-Harrison J. S. Multiple repetitive DNA sequences in the paracentromeric regions of Arabidopsis thaliana L. Chromosome Res. 1997 Jun;5(4):238–246. doi: 10.1023/a:1018415502795. [DOI] [PubMed] [Google Scholar]
  5. Brinkley B. R., Ouspenski I., Zinkowski R. P. Structure and molecular organization of the centromere-kinetochore complex. Trends Cell Biol. 1992 Jan;2(1):15–21. doi: 10.1016/0962-8924(92)90139-e. [DOI] [PubMed] [Google Scholar]
  6. Centola M., Carbon J. Cloning and characterization of centromeric DNA from Neurospora crassa. Mol Cell Biol. 1994 Feb;14(2):1510–1519. doi: 10.1128/mcb.14.2.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Choo K. H., Vissel B., Nagy A., Earle E., Kalitsis P. A survey of the genomic distribution of alpha satellite DNA on all the human chromosomes, and derivation of a new consensus sequence. Nucleic Acids Res. 1991 Mar 25;19(6):1179–1182. doi: 10.1093/nar/19.6.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clarke L., Baum M., Marschall L. G., Ngan V. K., Steiner N. C. Structure and function of Schizosaccharomyces pombe centromeres. Cold Spring Harb Symp Quant Biol. 1993;58:687–695. doi: 10.1101/sqb.1993.058.01.076. [DOI] [PubMed] [Google Scholar]
  9. Clarke L. Centromeres of budding and fission yeasts. Trends Genet. 1990 May;6(5):150–154. doi: 10.1016/0168-9525(90)90149-z. [DOI] [PubMed] [Google Scholar]
  10. Copenhaver G. P., Browne W. E., Preuss D. Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):247–252. doi: 10.1073/pnas.95.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dod B., Mottez E., Desmarais E., Bonhomme F., Roizés G. Concerted evolution of light satellite DNA in genus Mus implies amplification and homogenization of large blocks of repeats. Mol Biol Evol. 1989 Sep;6(5):478–491. doi: 10.1093/oxfordjournals.molbev.a040564. [DOI] [PubMed] [Google Scholar]
  12. Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982 Sep 9;299(5879):111–117. doi: 10.1038/299111a0. [DOI] [PubMed] [Google Scholar]
  13. Goldberg I. G., Sawhney H., Pluta A. F., Warburton P. E., Earnshaw W. C. Surprising deficiency of CENP-B binding sites in African green monkey alpha-satellite DNA: implications for CENP-B function at centromeres. Mol Cell Biol. 1996 Sep;16(9):5156–5168. doi: 10.1128/mcb.16.9.5156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harrington J. J., Van Bokkelen G., Mays R. W., Gustashaw K., Willard H. F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet. 1997 Apr;15(4):345–355. doi: 10.1038/ng0497-345. [DOI] [PubMed] [Google Scholar]
  15. Hegemann J. H., Fleig U. N. The centromere of budding yeast. Bioessays. 1993 Jul;15(7):451–460. doi: 10.1002/bies.950150704. [DOI] [PubMed] [Google Scholar]
  16. Heslop-Harrison J. S., Brandes A., Taketa S., Schmidt T., Vershinin A. V., Alkhimova E. G., Kamm A., Doudrick R. L., Schwarzacher T., Katsiotis A. The chromosomal distributions of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution. Genetica. 1997;100(1-3):197–204. [PubMed] [Google Scholar]
  17. Jiang J., Nasuda S., Dong F., Scherrer C. W., Woo S. S., Wing R. A., Gill B. S., Ward D. C. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):14210–14213. doi: 10.1073/pnas.93.24.14210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kamm A., Galasso I., Schmidt T., Heslop-Harrison J. S. Analysis of a repetitive DNA family from Arabidopsis arenosa and relationships between Arabidopsis species. Plant Mol Biol. 1995 Mar;27(5):853–862. doi: 10.1007/BF00037014. [DOI] [PubMed] [Google Scholar]
  19. Kamm A., Schmidt T., Heslop-Harrison J. S. Molecular and physical organization of highly repetitive, undermethylated DNA from Pennisetum glaucum. Mol Gen Genet. 1994 Aug 15;244(4):420–425. doi: 10.1007/BF00286694. [DOI] [PubMed] [Google Scholar]
  20. Kipling D., Warburton P. E. Centromeres, CENP-B and Tigger too. Trends Genet. 1997 Apr;13(4):141–145. doi: 10.1016/s0168-9525(97)01098-6. [DOI] [PubMed] [Google Scholar]
  21. Kipling D., Wilson H. E., Mitchell A. R., Taylor B. A., Cooke H. J. Mouse centromere mapping using oligonucleotide probes that detect variants of the minor satellite. Chromosoma. 1994 Mar;103(1):46–55. doi: 10.1007/BF00364725. [DOI] [PubMed] [Google Scholar]
  22. Koch J., Hindkjaer J., Kølvraa S., Bolund L. Construction of a panel of chromosome-specific oligonucleotide probes (PRINS-primers) useful for the identification of individual human chromosomes in situ. Cytogenet Cell Genet. 1995;71(2):142–147. doi: 10.1159/000134094. [DOI] [PubMed] [Google Scholar]
  23. Leach C. R., Donald T. M., Franks T. K., Spiniello S. S., Hanrahan C. F., Timmis J. N. Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica. Chromosoma. 1995 Jul;103(10):708–714. doi: 10.1007/BF00344232. [DOI] [PubMed] [Google Scholar]
  24. Lee C., Wevrick R., Fisher R. B., Ferguson-Smith M. A., Lin C. C. Human centromeric DNAs. Hum Genet. 1997 Sep;100(3-4):291–304. doi: 10.1007/s004390050508. [DOI] [PubMed] [Google Scholar]
  25. Mittelsten Scheid O., Afsar K., Paszkowski J. Gene inactivation in Arabidopsis thaliana is not accompanied by an accumulation of repeat-induced point mutations. Mol Gen Genet. 1994 Aug 2;244(3):325–330. doi: 10.1007/BF00285461. [DOI] [PubMed] [Google Scholar]
  26. Morgante M., Jurman I., Shi L., Zhu T., Keim P., Rafalski J. A. The STR120 satellite DNA of soybean: organization, evolution and chromosomal specificity. Chromosome Res. 1997 Sep;5(6):363–373. doi: 10.1023/a:1018492208247. [DOI] [PubMed] [Google Scholar]
  27. Murata M., Ogura Y., Motoyoshi F. Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet. 1994 Aug;69(4):361–370. doi: 10.1266/jjg.69.361. [DOI] [PubMed] [Google Scholar]
  28. Muro Y., Masumoto H., Yoda K., Nozaki N., Ohashi M., Okazaki T. Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box. J Cell Biol. 1992 Feb;116(3):585–596. doi: 10.1083/jcb.116.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nagaki K., Tsujimoto H., Sasakuma T. A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions. Chromosome Res. 1998 Jun;6(4):295–302. doi: 10.1023/a:1009270824142. [DOI] [PubMed] [Google Scholar]
  30. Pélissier T., Tutois S., Tourmente S., Deragon J. M., Picard G. DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica. 1996 Mar;97(2):141–151. doi: 10.1007/BF00054621. [DOI] [PubMed] [Google Scholar]
  31. Round E. K., Flowers S. K., Richards E. J. Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res. 1997 Nov;7(11):1045–1053. doi: 10.1101/gr.7.11.1045. [DOI] [PubMed] [Google Scholar]
  32. Schmidt R., West J., Love K., Lenehan Z., Lister C., Thompson H., Bouchez D., Dean C. Physical map and organization of Arabidopsis thaliana chromosome 4. Science. 1995 Oct 20;270(5235):480–483. doi: 10.1126/science.270.5235.480. [DOI] [PubMed] [Google Scholar]
  33. Schmidt T., Heslop-Harrison J. S. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens. Plant Mol Biol. 1996 Mar;30(6):1099–1113. doi: 10.1007/BF00019545. [DOI] [PubMed] [Google Scholar]
  34. Selker E. U., Fritz D. Y., Singer M. J. Dense nonsymmetrical DNA methylation resulting from repeat-induced point mutation in Neurospora. Science. 1993 Dec 10;262(5140):1724–1728. doi: 10.1126/science.8259516. [DOI] [PubMed] [Google Scholar]
  35. Simoens C. R., Gielen J., Van Montagu M., Inzé D. Characterization of highly repetitive sequences of Arabidopsis thaliana. Nucleic Acids Res. 1988 Jul 25;16(14B):6753–6766. doi: 10.1093/nar/16.14.6753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Steinberg R. A., Gorman K. B. Linked spontaneous CG----TA mutations at CpG sites in the gene for protein kinase regulatory subunit. Mol Cell Biol. 1992 Feb;12(2):767–772. doi: 10.1128/mcb.12.2.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sugimoto K., Shibata A., Himeno M. Nucleotide specificity at the boundary and size requirement of the target sites recognized by human centromere protein B (CENP-B) in vitro. Chromosome Res. 1998 Feb;6(2):133–140. doi: 10.1023/a:1009291030054. [DOI] [PubMed] [Google Scholar]
  38. Sunkel C. E., Coelho P. A. The elusive centromere: sequence divergence and functional conservation. Curr Opin Genet Dev. 1995 Dec;5(6):756–767. doi: 10.1016/0959-437x(95)80008-s. [DOI] [PubMed] [Google Scholar]
  39. Tyler-Smith C., Corish P., Burns E. Neocentromeres, the Y chromosome and centromere evolution. Chromosome Res. 1998 Jan;6(1):65–67. doi: 10.1023/a:1017102926419. [DOI] [PubMed] [Google Scholar]
  40. Uzawa S., Yanagida M. Visualization of centromeric and nucleolar DNA in fission yeast by fluorescence in situ hybridization. J Cell Sci. 1992 Feb;101(Pt 2):267–275. doi: 10.1242/jcs.101.2.267. [DOI] [PubMed] [Google Scholar]
  41. Vershinin A. V., Schwarzacher T., Heslop-Harrison J. S. The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell. 1995 Nov;7(11):1823–1833. doi: 10.1105/tpc.7.11.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Willard H. F. Chromosome-specific organization of human alpha satellite DNA. Am J Hum Genet. 1985 May;37(3):524–532. [PMC free article] [PubMed] [Google Scholar]
  43. Wilmen A., Pick H., Niedenthal R. K., Sen-Gupta M., Hegemann J. H. The yeast centromere CDEI/Cpf1 complex: differences between in vitro binding and in vivo function. Nucleic Acids Res. 1994 Jul 25;22(14):2791–2800. doi: 10.1093/nar/22.14.2791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zachgo E. A., Wang M. L., Dewdney J., Bouchez D., Camilleri C., Belmonte S., Huang L., Dolan M., Goodman H. M. A physical map of chromosome 2 of Arabidopsis thaliana. Genome Res. 1996 Jan;6(1):19–25. doi: 10.1101/gr.6.1.19. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES