Abstract
Plant cell vacuoles may have storage or lytic functions, but biochemical markers specific for the tonoplasts of functionally distinct vacuoles are poorly defined. Here, we use antipeptide antibodies specific for the tonoplast intrinsic proteins alpha-TIP, gamma-TIP, and delta-TIP in confocal immunofluorescence experiments to test the hypothesis that different TIP isoforms may define different vacuole functions. Organelles labeled with these antibodies were also labeled with antipyrophosphatase antibodies, demonstrating that regardless of their size, they had the expected characteristics of vacuoles. Our results demonstrate that the storage vacuole tonoplast contains delta-TIP, protein storage vacuoles containing seed-type storage proteins are marked by alpha- and delta- or alpha- and delta- plus gamma-TIP, whereas vacuoles storing vegetative storage proteins and pigments are marked by delta-TIP alone or delta- plus gamma-TIP. In contrast, those marked by gamma-TIP alone have characteristics of lytic vacuoles, and results from other researchers indicate that alpha-TIP alone is a marker for autophagic vacuoles. In root tips, relatively undifferentiated cells that contain vacuoles labeled separately for each of the three TIPs have been identified. These results argue that plant cells have the ability to generate and maintain three separate vacuole organelles, with each being marked by a different TIP, and that the functional diversity of the vacuolar system may be generated from different combinations of the three basic types.
Full Text
The Full Text of this article is available as a PDF (1,006.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boller T., Kende H. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 1979 Jun;63(6):1123–1132. doi: 10.1104/pp.63.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaumont F., Barrieu F., Herman E. M., Chrispeels M. J. Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol. 1998 Aug;117(4):1143–1152. doi: 10.1104/pp.117.4.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chrispeels M. J., Maurel C. Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol. 1994 May;105(1):9–13. doi: 10.1104/pp.105.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Culianez-Macia F. A., Martin C. DIP: a member of the MIP family of membrane proteins that is expressed in mature seeds and dark-grown seedlings of Antirrhinum majus. Plant J. 1993 Oct;4(4):717–725. doi: 10.1046/j.1365-313x.1993.04040717.x. [DOI] [PubMed] [Google Scholar]
- Herman E. M., Lamb C. J. Arabinogalactan-rich glycoproteins are localized on the cell surface and in intravacuolar multivesicular bodies. Plant Physiol. 1992 Jan;98(1):264–272. doi: 10.1104/pp.98.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman E. M., Li X., Su R. T., Larsen P., Hsu Ht., Sze H. Vacuolar-Type H+ -ATPases Are Associated with the Endoplasmic Reticulum and Provacuoles of Root Tip Cells. Plant Physiol. 1994 Dec;106(4):1313–1324. doi: 10.1104/pp.106.4.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higuchi T., Suga S., Tsuchiya T., Hisada H., Morishima S., Okada Y., Maeshima M. Molecular cloning, water channel activity and tissue specific expression of two isoforms of radish vacuolar aquaporin. Plant Cell Physiol. 1998 Sep;39(9):905–913. doi: 10.1093/oxfordjournals.pcp.a029453. [DOI] [PubMed] [Google Scholar]
- Hinz G, Hillmer S, Baumer M, Hohl I., I Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the golgi apparatus of developing pea cotyledons in different transport vesicles. Plant Cell. 1999 Aug;11(8):1509–1524. doi: 10.1105/tpc.11.8.1509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoh B., Hinz G., Jeong B. K., Robinson D. G. Protein storage vacuoles form de novo during pea cotyledon development. J Cell Sci. 1995 Jan;108(Pt 1):299–310. doi: 10.1242/jcs.108.1.299. [DOI] [PubMed] [Google Scholar]
- Holthuis J. C., Nichols B. J., Dhruvakumar S., Pelham H. R. Two syntaxin homologues in the TGN/endosomal system of yeast. EMBO J. 1998 Jan 2;17(1):113–126. doi: 10.1093/emboj/17.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holwerda B. C., Galvin N. J., Baranski T. J., Rogers J. C. In Vitro Processing of Aleurain, a Barley Vacuolar Thiol Protease. Plant Cell. 1990 Nov;2(11):1091–1106. doi: 10.1105/tpc.2.11.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höfte H., Hubbard L., Reizer J., Ludevid D., Herman E. M., Chrispeels M. J. Vegetative and Seed-Specific Forms of Tonoplast Intrinsic Protein in the Vacuolar Membrane of Arabidopsis thaliana. Plant Physiol. 1992 Jun;99(2):561–570. doi: 10.1104/pp.99.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue K., Motozaki A., Takeuchi Y., Nishimura M., Hara-Nishimura I. Molecular characterization of proteins in protein-body membrane that disappear most rapidly during transformation of protein bodies into vacuoles. Plant J. 1995 Feb;7(2):235–243. doi: 10.1046/j.1365-313x.1995.7020235.x. [DOI] [PubMed] [Google Scholar]
- Jauh G. Y., Fischer A. M., Grimes H. D., Ryan C. A., Jr, Rogers J. C. delta-Tonoplast intrinsic protein defines unique plant vacuole functions. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12995–12999. doi: 10.1073/pnas.95.22.12995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson K. D., Herman E. M., Chrispeels M. J. An abundant, highly conserved tonoplast protein in seeds. Plant Physiol. 1989 Nov;91(3):1006–1013. doi: 10.1104/pp.91.3.1006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerner D. R., Raikhel N. V. Cloning and characterization of root-specific barley lectin. Plant Physiol. 1989 Sep;91(1):124–129. doi: 10.1104/pp.91.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeshima M. Characterization of the major integral protein of vacuolar membrane. Plant Physiol. 1992 Apr;98(4):1248–1254. doi: 10.1104/pp.98.4.1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeshima M., Yoshida S. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem. 1989 Nov 25;264(33):20068–20073. [PubMed] [Google Scholar]
- Marty-Mazars D., Clémencet M. C., Dozolme P., Marty F. Antibodies to the tonoplast from the storage parenchyma cells of beetroot recognize a major intrinsic protein related to TIPs. Eur J Cell Biol. 1995 Jan;66(1):106–118. [PubMed] [Google Scholar]
- Maurel Christophe. AQUAPORINS AND WATER PERMEABILITY OF PLANT MEMBRANES. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):399–429. doi: 10.1146/annurev.arplant.48.1.399. [DOI] [PubMed] [Google Scholar]
- Müntz K. Deposition of storage proteins. Plant Mol Biol. 1998 Sep;38(1-2):77–99. [PubMed] [Google Scholar]
- Neuhaus J. M., Rogers J. C. Sorting of proteins to vacuoles in plant cells. Plant Mol Biol. 1998 Sep;38(1-2):127–144. [PubMed] [Google Scholar]
- Nichols B. J., Pelham H. R. SNAREs and membrane fusion in the Golgi apparatus. Biochim Biophys Acta. 1998 Aug 14;1404(1-2):9–31. doi: 10.1016/s0167-4889(98)00044-5. [DOI] [PubMed] [Google Scholar]
- Paris N., Rogers S. W., Jiang L., Kirsch T., Beevers L., Phillips T. E., Rogers J. C. Molecular cloning and further characterization of a probable plant vacuolar sorting receptor. Plant Physiol. 1997 Sep;115(1):29–39. doi: 10.1104/pp.115.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paris N., Stanley C. M., Jones R. L., Rogers J. C. Plant cells contain two functionally distinct vacuolar compartments. Cell. 1996 May 17;85(4):563–572. doi: 10.1016/s0092-8674(00)81256-8. [DOI] [PubMed] [Google Scholar]
- Rogers S. W., Burks M., Rogers J. C. Monoclonal antibodies to barley aleurain and homologs from other plants. Plant J. 1997 Jun;11(6):1359–1368. doi: 10.1046/j.1365-313x.1997.11061359.x. [DOI] [PubMed] [Google Scholar]
- Sarafian V., Kim Y., Poole R. J., Rea P. A. Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1775–1779. doi: 10.1073/pnas.89.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steffan W., Kovác P., Albersheim P., Darvill A. G., Hahn M. G. Characterization of a monoclonal antibody that recognizes an arabinosylated (1-->6)-beta-D-galactan epitope in plant complex carbohydrates. Carbohydr Res. 1995 Oct 2;275(2):295–307. doi: 10.1016/0008-6215(95)00174-r. [DOI] [PubMed] [Google Scholar]
- Swanson SJ, Bethke PC, Jones RL. Barley aleurone cells contain two types of vacuoles. Characterization Of lytic organelles by use of fluorescent probes . Plant Cell. 1998 May;10(5):685–698. doi: 10.1105/tpc.10.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weig A., Deswarte C., Chrispeels M. J. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol. 1997 Aug;114(4):1347–1357. doi: 10.1104/pp.114.4.1347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang G. F., Staehelin L. A. Functional compartmentation of the Golgi apparatus of plant cells : immunocytochemical analysis of high-pressure frozen- and freeze-substituted sycamore maple suspension culture cells. Plant Physiol. 1992 Jul;99(3):1070–1083. doi: 10.1104/pp.99.3.1070. [DOI] [PMC free article] [PubMed] [Google Scholar]
- da Silva Conceiço A., Marty-Mazars D., Bassham D. C., Sanderfoot A. A., Marty F., Raikhel N. V. The syntaxin homolog AtPEP12p resides on a late post-Golgi compartment in plants. Plant Cell. 1997 Apr;9(4):571–582. [PMC free article] [PubMed] [Google Scholar]
