Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Oct;11(10):2013–2030. doi: 10.1105/tpc.11.10.2013

Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues.

T M DeZwaan 1, A M Carroll 1, B Valent 1, J A Sweigard 1
PMCID: PMC144101  PMID: 10521529

Abstract

Mutagenesis of Magnaporthe grisea strain 4091-5-8 led to the identification of PTH11, a pathogenicity gene predicted to encode a novel transmembrane protein. We localized a Pth11-green fluorescent protein fusion to the cell membrane and vacuoles. pth11 mutants of strain 4091-5-8 are nonpathogenic due to a defect in appressorium differentiation. This defect is reminiscent of wild-type strains on poorly inductive surfaces; conidia germinate and undergo early differentiation events, but appressorium maturation is impaired. Functional appressoria are formed by pth11 mutants at 10 to 15% of wild-type frequencies, suggesting that the protein encoded by PTH11 (Pth11p) is not required for appressorium morphogenesis but is involved in host surface recognition. We assayed Pth11p function in multiple M. grisea strains. These experiments indicated that Pth11p can activate appressorium differentiation in response to inductive surface cues and repress differentiation on poorly inductive surfaces and that multiple signaling pathways mediate differentiation. PTH11 genes from diverged M. grisea strains complemented the 4091-5-8 pth11 mutant, indicating functional conservation. Exogenous activation of cellular signaling suppressed pth11 defects. These findings suggest that Pth11p functions at the cell cortex as an upstream effector of appressorium differentiation in response to surface cues.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi K., Hamer J. E. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell. 1998 Aug;10(8):1361–1374. doi: 10.1105/tpc.10.8.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antonsson B., Montessuit S., Friedli L., Payton M. A., Paravicini G. Protein kinase C in yeast. Characteristics of the Saccharomyces cerevisiae PKC1 gene product. J Biol Chem. 1994 Jun 17;269(24):16821–16828. [PubMed] [Google Scholar]
  3. Beckerman J. L., Ebbole D. J. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol Plant Microbe Interact. 1996 Aug;9(6):450–456. doi: 10.1094/mpmi-9-0450. [DOI] [PubMed] [Google Scholar]
  4. Bockaert J., Pin J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999 Apr 1;18(7):1723–1729. doi: 10.1093/emboj/18.7.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Choi W., Dean R. A. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell. 1997 Nov;9(11):1973–1983. doi: 10.1105/tpc.9.11.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crawford M. S., Chumley F. G., Weaver C. G., Valent B. Characterization of the Heterokaryotic and Vegetative Diploid Phases of MAGNAPORTHE GRISEA. Genetics. 1986 Dec;114(4):1111–1129. doi: 10.1093/genetics/114.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gudermann T., Kalkbrenner F., Schultz G. Diversity and selectivity of receptor-G protein interaction. Annu Rev Pharmacol Toxicol. 1996;36:429–459. doi: 10.1146/annurev.pa.36.040196.002241. [DOI] [PubMed] [Google Scholar]
  8. Hamer J. E., Howard R. J., Chumley F. G., Valent B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science. 1988 Jan 15;239(4837):288–290. doi: 10.1126/science.239.4837.288. [DOI] [PubMed] [Google Scholar]
  9. Hicke L. Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol. 1999 Mar;9(3):107–112. doi: 10.1016/s0962-8924(98)01491-3. [DOI] [PubMed] [Google Scholar]
  10. Hicke L., Zanolari B., Riezman H. Cytoplasmic tail phosphorylation of the alpha-factor receptor is required for its ubiquitination and internalization. J Cell Biol. 1998 Apr 20;141(2):349–358. doi: 10.1083/jcb.141.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoch H. C., Staples R. C., Whitehead B., Comeau J., Wolf E. D. Signaling for growth orientation and cell differentiation by surface topography in uromyces. Science. 1987 Mar 27;235(4796):1659–1662. doi: 10.1126/science.235.4796.1659. [DOI] [PubMed] [Google Scholar]
  12. Howard R. J., Ferrari M. A., Roach D. H., Money N. P. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11281–11284. doi: 10.1073/pnas.88.24.11281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kershaw M. J., Talbot N. J. Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol. 1998 Feb;23(1):18–33. doi: 10.1006/fgbi.1997.1022. [DOI] [PubMed] [Google Scholar]
  14. Kolattukudy P. E., Rogers L. M., Li D., Hwang C. S., Flaishman M. A. Surface signaling in pathogenesis. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4080–4087. doi: 10.1073/pnas.92.10.4080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee Y. H., Dean R. A. cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea. Plant Cell. 1993 Jun;5(6):693–700. doi: 10.1105/tpc.5.6.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liu S., Dean R. A. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact. 1997 Dec;10(9):1075–1086. doi: 10.1094/MPMI.1997.10.9.1075. [DOI] [PubMed] [Google Scholar]
  17. Mitchell T. K., Dean R. A. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell. 1995 Nov;7(11):1869–1878. doi: 10.1105/tpc.7.11.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Oldenburg K. R., Vo K. T., Michaelis S., Paddon C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 1997 Jan 15;25(2):451–452. doi: 10.1093/nar/25.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Podila G. K., Rogers L. M., Kolattukudy P. E. Chemical Signals from Avocado Surface Wax Trigger Germination and Appressorium Formation in Colletotrichum gloeosporioides. Plant Physiol. 1993 Sep;103(1):267–272. doi: 10.1104/pp.103.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schiestl R. H., Dominska M., Petes T. D. Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol. 1993 May;13(5):2697–2705. doi: 10.1128/mcb.13.5.2697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sikorski R. S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989 May;122(1):19–27. doi: 10.1093/genetics/122.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sweigard J. A., Carroll A. M., Farrall L., Chumley F. G., Valent B. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact. 1998 May;11(5):404–412. doi: 10.1094/MPMI.1998.11.5.404. [DOI] [PubMed] [Google Scholar]
  23. Sweigard J. A., Carroll A. M., Kang S., Farrall L., Chumley F. G., Valent B. Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell. 1995 Aug;7(8):1221–1233. doi: 10.1105/tpc.7.8.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Talbot N. J. Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol. 1995 Jan;3(1):9–16. doi: 10.1016/s0966-842x(00)88862-9. [DOI] [PubMed] [Google Scholar]
  25. Talbot N. J., Kershaw M. J., Wakley G. E., De Vries OMH., Wessels JGH., Hamer J. E. MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea. Plant Cell. 1996 Jun;8(6):985–999. doi: 10.1105/tpc.8.6.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Urban M., Bhargava T., Hamer J. E. An ATP-driven efflux pump is a novel pathogenicity factor in rice blast disease. EMBO J. 1999 Feb 1;18(3):512–521. doi: 10.1093/emboj/18.3.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Valent B., Farrall L., Chumley F. G. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics. 1991 Jan;127(1):87–101. doi: 10.1093/genetics/127.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Watanabe M., Chen C. Y., Levin D. E. Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate specificity similar to that of mammalian PKC. J Biol Chem. 1994 Jun 17;269(24):16829–16836. [PubMed] [Google Scholar]
  29. Xu J. R., Hamer J. E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 1996 Nov 1;10(21):2696–2706. doi: 10.1101/gad.10.21.2696. [DOI] [PubMed] [Google Scholar]
  30. Xu J. R., Staiger C. J., Hamer J. E. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12713–12718. doi: 10.1073/pnas.95.21.12713. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES