Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Oct;11(10):1853–1866. doi: 10.1105/tpc.11.10.1853

A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome.

E Speulman 1, P L Metz 1, G van Arkel 1, B te Lintel Hekkert 1, W J Stiekema 1, A Pereira 1
PMCID: PMC144104  PMID: 10521517

Abstract

A modified Enhancer-Inhibitor transposon system was used to generate a series of mutant lines by single-seed descent such that multiple I insertions occurred per plant. The distribution of original insertions in the population was assessed by isolating transposon-flanking DNA, and a database of insertion sites was created. Approximately three-quarters of the identified insertion sites show similarity to sequences stored in public databases, which demonstrates the power of this regimen of insertional mutagenesis. To isolate insertions in specific genes, we developed three-dimensional pooling and polymerase chain reaction strategies that we then validated by identifying mutants for the regulator genes APETALA1 and SHOOT MERISTEMLESS. The system then was used to identify inserts in a class of uncharacterized genes involved in lipid biosynthesis; one such insertion conferred a fiddlehead mutant phenotype.

Full Text

The Full Text of this article is available as a PDF (597.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarts M. G., Corzaan P., Stiekema W. J., Pereira A. A two-element Enhancer-Inhibitor transposon system in Arabidopsis thaliana. Mol Gen Genet. 1995 Jun 10;247(5):555–564. doi: 10.1007/BF00290346. [DOI] [PubMed] [Google Scholar]
  2. Aarts M. G., Dirkse W. G., Stiekema W. J., Pereira A. Transposon tagging of a male sterility gene in Arabidopsis. Nature. 1993 Jun 24;363(6431):715–717. doi: 10.1038/363715a0. [DOI] [PubMed] [Google Scholar]
  3. Aarts M. G., Keijzer C. J., Stiekema W. J., Pereira A. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell. 1995 Dec;7(12):2115–2127. doi: 10.1105/tpc.7.12.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Azpiroz-Leehan R., Feldmann K. A. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 1997 Apr;13(4):152–156. doi: 10.1016/s0168-9525(97)01094-9. [DOI] [PubMed] [Google Scholar]
  5. Ballinger D. G., Benzer S. Targeted gene mutations in Drosophila. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9402–9406. doi: 10.1073/pnas.86.23.9402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bancroft I., Dean C. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics. 1993 Aug;134(4):1221–1229. doi: 10.1093/genetics/134.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bancroft I., Jones J. D., Dean C. Heterologous transposon tagging of the DRL1 locus in Arabidopsis. Plant Cell. 1993 Jun;5(6):631–638. doi: 10.1105/tpc.5.6.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bevan M., Bancroft I., Bent E., Love K., Goodman H., Dean C., Bergkamp R., Dirkse W., Van Staveren M., Stiekema W. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 1998 Jan 29;391(6666):485–488. doi: 10.1038/35140. [DOI] [PubMed] [Google Scholar]
  9. Bouchez D., Höfte H. Functional genomics in plants. Plant Physiol. 1998 Nov;118(3):725–732. doi: 10.1104/pp.118.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Camilleri C., Lafleuriel J., Macadré C., Varoquaux F., Parmentier Y., Picard G., Caboche M., Bouchez D. A YAC contig map of Arabidopsis thaliana chromosome 3. Plant J. 1998 Jun;14(5):633–642. doi: 10.1046/j.1365-313x.1998.00159.x. [DOI] [PubMed] [Google Scholar]
  11. Cardon G. H., Frey M., Saedler H., Gierl A. Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. Plant J. 1993 Jun;3(6):773–784. [PubMed] [Google Scholar]
  12. Das L., Martienssen R. Site-selected transposon mutagenesis at the hcf106 locus in maize. Plant Cell. 1995 Mar;7(3):287–294. doi: 10.1105/tpc.7.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Endrizzi K., Moussian B., Haecker A., Levin J. Z., Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 1996 Dec;10(6):967–979. doi: 10.1046/j.1365-313x.1996.10060967.x. [DOI] [PubMed] [Google Scholar]
  14. Goodman H. M., Ecker J. R., Dean C. The genome of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10831–10835. doi: 10.1073/pnas.92.24.10831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Höfte H., Desprez T., Amselem J., Chiapello H., Rouzé P., Caboche M., Moisan A., Jourjon M. F., Charpenteau J. L., Berthomieu P. An inventory of 1152 expressed sequence tags obtained by partial sequencing of cDNAs from Arabidopsis thaliana. Plant J. 1993 Dec;4(6):1051–1061. doi: 10.1046/j.1365-313x.1993.04061051.x. [DOI] [PubMed] [Google Scholar]
  16. James D. W., Jr, Lim E., Keller J., Plooy I., Ralston E., Dooner H. K. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell. 1995 Mar;7(3):309–319. doi: 10.1105/tpc.7.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jones D. A., Thomas C. M., Hammond-Kosack K. E., Balint-Kurti P. J., Jones J. D. Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science. 1994 Nov 4;266(5186):789–793. doi: 10.1126/science.7973631. [DOI] [PubMed] [Google Scholar]
  18. Kaiser K., Goodwin S. F. "Site-selected" transposon mutagenesis of Drosophila. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1686–1690. doi: 10.1073/pnas.87.5.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaneko T., Kotani H., Nakamura Y., Sato S., Asamizu E., Miyajima N., Tabata S. Structural analysis of Arabidopsis thaliana chromosome 5. V. Sequence features of the regions of 1,381,565 bp covered by twenty one physically assigned P1 and TAC clones. DNA Res. 1998 Apr 30;5(2):131–145. doi: 10.1093/dnares/5.2.131. [DOI] [PubMed] [Google Scholar]
  20. Koes R., Souer E., van Houwelingen A., Mur L., Spelt C., Quattrocchio F., Wing J., Oppedijk B., Ahmed S., Maes T. Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8149–8153. doi: 10.1073/pnas.92.18.8149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Koncz C., Németh K., Rédei G. P., Schell J. T-DNA insertional mutagenesis in Arabidopsis. Plant Mol Biol. 1992 Dec;20(5):963–976. doi: 10.1007/BF00027166. [DOI] [PubMed] [Google Scholar]
  22. Krysan P. J., Young J. C., Tax F., Sussman M. R. Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8145–8150. doi: 10.1073/pnas.93.15.8145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lolle S. J., Cheung A. Y., Sussex I. M. Fiddlehead: an Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal cells. Dev Biol. 1992 Aug;152(2):383–392. doi: 10.1016/0012-1606(92)90145-7. [DOI] [PubMed] [Google Scholar]
  24. Long J. A., Moan E. I., Medford J. I., Barton M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 1996 Jan 4;379(6560):66–69. doi: 10.1038/379066a0. [DOI] [PubMed] [Google Scholar]
  25. Mandel M. A., Gustafson-Brown C., Savidge B., Yanofsky M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992 Nov 19;360(6401):273–277. doi: 10.1038/360273a0. [DOI] [PubMed] [Google Scholar]
  26. McKinney E. C., Ali N., Traut A., Feldmann K. A., Belostotsky D. A., McDowell J. M., Meagher R. B. Sequence-based identification of T-DNA insertion mutations in Arabidopsis: actin mutants act2-1 and act4-1. Plant J. 1995 Oct;8(4):613–622. doi: 10.1046/j.1365-313x.1995.8040613.x. [DOI] [PubMed] [Google Scholar]
  27. Mena M., Ambrose B. A., Meeley R. B., Briggs S. P., Yanofsky M. F., Schmidt R. J. Diversification of C-function activity in maize flower development. Science. 1996 Nov 29;274(5292):1537–1540. doi: 10.1126/science.274.5292.1537. [DOI] [PubMed] [Google Scholar]
  28. Menssen A., Höhmann S., Martin W., Schnable P. S., Peterson P. A., Saedler H., Gierl A. The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J. 1990 Oct;9(10):3051–3057. doi: 10.1002/j.1460-2075.1990.tb07501.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mewes H. W., Albermann K., Bähr M., Frishman D., Gleissner A., Hani J., Heumann K., Kleine K., Maierl A., Oliver S. G. Overview of the yeast genome. Nature. 1997 May 29;387(6632 Suppl):7–65. doi: 10.1038/42755. [DOI] [PubMed] [Google Scholar]
  30. Millar A. A., Clemens S., Zachgo S., Giblin E. M., Taylor D. C., Kunst L. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell. 1999 May;11(5):825–838. doi: 10.1105/tpc.11.5.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mozo T., Fischer S., Meier-Ewert S., Lehrach H., Altmann T. Use of the IGF BAC library for physical mapping of the Arabidopsis thaliana genome. Plant J. 1998 Nov;16(3):377–384. doi: 10.1046/j.1365-313x.1998.00299.x. [DOI] [PubMed] [Google Scholar]
  32. Newman T., de Bruijn F. J., Green P., Keegstra K., Kende H., McIntosh L., Ohlrogge J., Raikhel N., Somerville S., Thomashow M. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. doi: 10.1104/pp.106.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Okuley J., Lightner J., Feldmann K., Yadav N., Lark E., Browse J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell. 1994 Jan;6(1):147–158. doi: 10.1105/tpc.6.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pereira A., Aarts M. G. Transposon tagging with the En-I system. Methods Mol Biol. 1998;82:329–338. doi: 10.1385/0-89603-391-0:329. [DOI] [PubMed] [Google Scholar]
  35. Pereira A., Saedler H. Transpositional behavior of the maize En/Spm element in transgenic tobacco. EMBO J. 1989 May;8(5):1315–1321. doi: 10.1002/j.1460-2075.1989.tb03511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rounsley S. D., Glodek A., Sutton G., Adams M. D., Somerville C. R., Venter J. C., Kerlavage A. R. The construction of Arabidopsis expressed sequence tag assemblies. A new resource to facilitate gene identification. Plant Physiol. 1996 Nov;112(3):1177–1183. doi: 10.1104/pp.112.3.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rushforth A. M., Saari B., Anderson P. Site-selected insertion of the transposon Tc1 into a Caenorhabditis elegans myosin light chain gene. Mol Cell Biol. 1993 Feb;13(2):902–910. doi: 10.1128/mcb.13.2.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schmidt R., Love K., West J., Lenehan Z., Dean C. Description of 31 YAC contigs spanning the majority of Arabidopsis thaliana chromosome 5. Plant J. 1997 Mar;11(3):563–572. doi: 10.1046/j.1365-313x.1997.11030563.x. [DOI] [PubMed] [Google Scholar]
  39. Schmidt R., West J., Cnops G., Love K., Balestrazzi A., Dean C. Detailed description of four YAC contigs representing 17 Mb of chromosome 4 of Arabidopsis thaliana ecotype Columbia. Plant J. 1996 May;9(5):755–765. doi: 10.1046/j.1365-313x.1996.9050755.x. [DOI] [PubMed] [Google Scholar]
  40. Schwarz-Sommer Z., Shepherd N., Tacke E., Gierl A., Rohde W., Leclercq L., Mattes M., Berndtgen R., Peterson P. A., Saedler H. Influence of transposable elements on the structure and function of the A1 gene of Zea mays. EMBO J. 1987 Feb;6(2):287–294. doi: 10.1002/j.1460-2075.1987.tb04752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Winkler R. G., Frank M. R., Galbraith D. W., Feyereisen R., Feldmann K. A. Systematic reverse genetics of transfer-DNA-tagged lines of Arabidopsis. Isolation of mutations in the cytochrome p450 gene superfamily. Plant Physiol. 1998 Nov;118(3):743–750. doi: 10.1104/pp.118.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wisman E., Cardon G. H., Fransz P., Saedler H. The behaviour of the autonomous maize transposable element En/Spm in Arabidopsis thaliana allows efficient mutagenesis. Plant Mol Biol. 1998 Aug;37(6):989–999. doi: 10.1023/a:1006082009151. [DOI] [PubMed] [Google Scholar]
  43. Zachgo E. A., Wang M. L., Dewdney J., Bouchez D., Camilleri C., Belmonte S., Huang L., Dolan M., Goodman H. M. A physical map of chromosome 2 of Arabidopsis thaliana. Genome Res. 1996 Jan;6(1):19–25. doi: 10.1101/gr.6.1.19. [DOI] [PubMed] [Google Scholar]
  44. Zwaal R. R., Broeks A., van Meurs J., Groenen J. T., Plasterk R. H. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7431–7435. doi: 10.1073/pnas.90.16.7431. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES