Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Oct;11(10):1841–1852. doi: 10.1105/tpc.11.10.1841

Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics.

A F Tissier 1, S Marillonnet 1, V Klimyuk 1, K Patel 1, M A Torres 1, G Murphy 1, J D Jones 1
PMCID: PMC144107  PMID: 10521516

Abstract

A new system for insertional mutagenesis based on the maize Enhancer/Suppressor-mutator (En/Spm) element was introduced into Arabidopsis. A single T-DNA construct carried a nonautonomous defective Spm (dSpm) element with a phosphinothricin herbicide resistance (BAR) gene, a transposase expression cassette, and a counterselectable gene. This construct was used to select for stable dSpm transpositions. Treatments for both positive (BAR) and negative selection markers were applicable to soil-grown plants, allowing the recovery of new transpositions on a large scale. To date, a total of 48,000 lines in pools of 50 have been recovered, of which approximately 80% result from independent insertion events. DNA extracted from these pools was used in reverse genetic screens, either by polymerase chain reaction (PCR) using primers from the transposon and the targeted gene or by the display of insertions whereby inverse PCR products of insertions from the DNA pools are spotted on a membrane that is then hybridized with the probe of interest. By sequencing PCR-amplified fragments adjacent to insertion sites, we established a sequenced insertion-site database of 1200 sequences. This database permitted a comparison of the chromosomal distribution of transpositions from various T-DNA locations.

Full Text

The Full Text of this article is available as a PDF (524.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarts M. G., Corzaan P., Stiekema W. J., Pereira A. A two-element Enhancer-Inhibitor transposon system in Arabidopsis thaliana. Mol Gen Genet. 1995 Jun 10;247(5):555–564. doi: 10.1007/BF00290346. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bancroft I., Dean C. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics. 1993 Aug;134(4):1221–1229. doi: 10.1093/genetics/134.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baulcombe D. C. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol Biol. 1996 Oct;32(1-2):79–88. doi: 10.1007/BF00039378. [DOI] [PubMed] [Google Scholar]
  5. Cardon G. H., Frey M., Saedler H., Gierl A. Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. Plant J. 1993 Jun;3(6):773–784. [PubMed] [Google Scholar]
  6. Carroll B. J., Klimyuk V. I., Thomas C. M., Bishop G. J., Harrison K., Scofield S. R., Jones J. D. Germinal transpositions of the maize element Dissociation from T-DNA loci in tomato. Genetics. 1995 Jan;139(1):407–420. doi: 10.1093/genetics/139.1.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cavrois M., Wain-Hobson S., Wattel E. Stochastic events in the amplification of HTLV-I integration sites by linker-mediated PCR. Res Virol. 1995 May-Jun;146(3):179–184. doi: 10.1016/0923-2516(96)80578-4. [DOI] [PubMed] [Google Scholar]
  8. Chandler V. L., Hardeman K. J. The Mu elements of Zea mays. Adv Genet. 1992;30:77–122. doi: 10.1016/s0065-2660(08)60319-3. [DOI] [PubMed] [Google Scholar]
  9. Das L., Martienssen R. Site-selected transposon mutagenesis at the hcf106 locus in maize. Plant Cell. 1995 Mar;7(3):287–294. doi: 10.1105/tpc.7.3.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gheysen G., Herman L., Breyne P., Gielen J., Van Montagu M., Depicker A. Cloning and sequence analysis of truncated T-DNA inserts from Nicotiana tabacum. Gene. 1990 Oct 15;94(2):155–163. doi: 10.1016/0378-1119(90)90382-2. [DOI] [PubMed] [Google Scholar]
  11. Greenblatt I M, Brink R A. Twin Mutations in Medium Variegated Pericarp Maize. Genetics. 1962 Apr;47(4):489–501. doi: 10.1093/genetics/47.4.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hehl R., Nacken W. K., Krause A., Saedler H., Sommer H. Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol Biol. 1991 Feb;16(2):369–371. doi: 10.1007/BF00020572. [DOI] [PubMed] [Google Scholar]
  13. James D. W., Jr, Lim E., Keller J., Plooy I., Ralston E., Dooner H. K. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell. 1995 Mar;7(3):309–319. doi: 10.1105/tpc.7.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones J. D., Carland F., Lim E., Ralston E., Dooner H. K. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell. 1990 Aug;2(8):701–707. doi: 10.1105/tpc.2.8.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jones J. D., Shlumukov L., Carland F., English J., Scofield S. R., Bishop G. J., Harrison K. Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res. 1992 Nov;1(6):285–297. doi: 10.1007/BF02525170. [DOI] [PubMed] [Google Scholar]
  16. Kempin S. A., Liljegren S. J., Block L. M., Rounsley S. D., Yanofsky M. F., Lam E. Targeted disruption in Arabidopsis. Nature. 1997 Oct 23;389(6653):802–803. doi: 10.1038/39770. [DOI] [PubMed] [Google Scholar]
  17. Klimyuk V. I., Jones J. D. AtDMC1, the Arabidopsis homologue of the yeast DMC1 gene: characterization, transposon-induced allelic variation and meiosis-associated expression. Plant J. 1997 Jan;11(1):1–14. doi: 10.1046/j.1365-313x.1997.11010001.x. [DOI] [PubMed] [Google Scholar]
  18. Koes R., Souer E., van Houwelingen A., Mur L., Spelt C., Quattrocchio F., Wing J., Oppedijk B., Ahmed S., Maes T. Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8149–8153. doi: 10.1073/pnas.92.18.8149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Krysan P. J., Young J. C., Tax F., Sussman M. R. Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8145–8150. doi: 10.1073/pnas.93.15.8145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lagerström M., Parik J., Malmgren H., Stewart J., Pettersson U., Landegren U. Capture PCR: efficient amplification of DNA fragments adjacent to a known sequence in human and YAC DNA. PCR Methods Appl. 1991 Nov;1(2):111–119. doi: 10.1101/gr.1.2.111. [DOI] [PubMed] [Google Scholar]
  21. Liu Y. G., Mitsukawa N., Oosumi T., Whittier R. F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995 Sep;8(3):457–463. doi: 10.1046/j.1365-313x.1995.08030457.x. [DOI] [PubMed] [Google Scholar]
  22. Martienssen R. A. Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2021–2026. doi: 10.1073/pnas.95.5.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McKinney E. C., Ali N., Traut A., Feldmann K. A., Belostotsky D. A., McDowell J. M., Meagher R. B. Sequence-based identification of T-DNA insertion mutations in Arabidopsis: actin mutants act2-1 and act4-1. Plant J. 1995 Oct;8(4):613–622. doi: 10.1046/j.1365-313x.1995.8040613.x. [DOI] [PubMed] [Google Scholar]
  24. Meissner R. C., Jin H., Cominelli E., Denekamp M., Fuertes A., Greco R., Kranz H. D., Penfield S., Petroni K., Urzainqui A. Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. Plant Cell. 1999 Oct;11(10):1827–1840. doi: 10.1105/tpc.11.10.1827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miklos G. L., Rubin G. M. The role of the genome project in determining gene function: insights from model organisms. Cell. 1996 Aug 23;86(4):521–529. doi: 10.1016/s0092-8674(00)80126-9. [DOI] [PubMed] [Google Scholar]
  26. Mozo T., Fischer S., Shizuya H., Altmann T. Construction and characterization of the IGF Arabidopsis BAC library. Mol Gen Genet. 1998 Jun;258(5):562–570. doi: 10.1007/s004380050769. [DOI] [PubMed] [Google Scholar]
  27. Nacken W. K., Piotrowiak R., Saedler H., Sommer H. The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion. Mol Gen Genet. 1991 Aug;228(1-2):201–208. doi: 10.1007/BF00282466. [DOI] [PubMed] [Google Scholar]
  28. Nacry P., Camilleri C., Courtial B., Caboche M., Bouchez D. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis. Genetics. 1998 Jun;149(2):641–650. doi: 10.1093/genetics/149.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. O'Keefe D. P., Tepperman J. M., Dean C., Leto K. J., Erbes D. L., Odell J. T. Plant Expression of a Bacterial Cytochrome P450 That Catalyzes Activation of a Sulfonylurea Pro-Herbicide. Plant Physiol. 1994 Jun;105(2):473–482. doi: 10.1104/pp.105.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ochman H., Gerber A. S., Hartl D. L. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988 Nov;120(3):621–623. doi: 10.1093/genetics/120.3.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Saedler H., Bonas U., Gierl A., Harrison B. J., Klösgen R. B., Krebbers E., Nevers P., Peterson P. A., Schwarz-Sommer Z., Sommer H. Transposable elements in Antirrhinum majus and Zea mays. Cold Spring Harb Symp Quant Biol. 1984;49:355–361. doi: 10.1101/sqb.1984.049.01.042. [DOI] [PubMed] [Google Scholar]
  32. Speulman E., Metz P. L., van Arkel G., te Lintel Hekkert B., Stiekema W. J., Pereira A. A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell. 1999 Oct;11(10):1853–1866. doi: 10.1105/tpc.11.10.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sundaresan V., Springer P., Volpe T., Haward S., Jones J. D., Dean C., Ma H., Martienssen R. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 1995 Jul 15;9(14):1797–1810. doi: 10.1101/gad.9.14.1797. [DOI] [PubMed] [Google Scholar]
  34. Svab Z., Harper E. C., Jones J. D., Maliga P. Aminoglycoside-3''-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Mol Biol. 1990 Feb;14(2):197–205. doi: 10.1007/BF00018560. [DOI] [PubMed] [Google Scholar]
  35. Torres M. A., Onouchi H., Hamada S., Machida C., Hammond-Kosack K. E., Jones J. D. Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J. 1998 May;14(3):365–370. doi: 10.1046/j.1365-313x.1998.00136.x. [DOI] [PubMed] [Google Scholar]
  36. Winkler R. G., Frank M. R., Galbraith D. W., Feyereisen R., Feldmann K. A. Systematic reverse genetics of transfer-DNA-tagged lines of Arabidopsis. Isolation of mutations in the cytochrome p450 gene superfamily. Plant Physiol. 1998 Nov;118(3):743–750. doi: 10.1104/pp.118.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wisman E., Hartmann U., Sagasser M., Baumann E., Palme K., Hahlbrock K., Saedler H., Weisshaar B. Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12432–12437. doi: 10.1073/pnas.95.21.12432. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES