Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Nov;11(11):2075–2086. doi: 10.1105/tpc.11.11.2075

Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant vigna angularis

S Kimura 1, W Laosinchai 1, T Itoh 1, X Cui 1, CR Linder 1, RM Brown Jr 1
PMCID: PMC144118  PMID: 10559435

Abstract

The catalytic subunit of cellulose synthase is shown to be associated with the putative cellulose-synthesizing complex (rosette terminal complex [TC]) in vascular plants. The catalytic subunit domain of cotton cellulose synthase was cloned using a primer based on a rice expressed sequence tag (D41261) from which a specific primer was constructed to run a polymerase chain reaction that used a cDNA library from 24 days postanthesis cotton fibers as a template. The catalytic region of cotton cellulose synthase was expressed in Escherichia coli, and polyclonal antisera were produced. Colloidal gold coupled to goat anti-rabbit secondary antibodies provided a tag for visualization of the catalytic region of cellulose synthase during transmission electron microscopy. With a freeze-fracture replica labeling technique, the antibodies specifically localized to rosette TCs in the plasma membrane on the P-fracture face. Antibodies did not specifically label any structures on the E-fracture face. Significantly, a greater number of immune probes labeled the rosette TCs (i.e., gold particles were 20 nm or closer to the edge of the rosette TC) than did preimmune probes. These experiments confirm the long-held hypothesis that cellulose synthase is a component of the rosette TC in vascular plants, proving that the enzyme complex resides within the structure first described by freeze fracture in 1980. In addition, this study provides independent proof that the CelA gene is in fact one of the genes for cellulose synthase in vascular plants.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amor Y., Haigler C. H., Johnson S., Wainscott M., Delmer D. P. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9353–9357. doi: 10.1073/pnas.92.20.9353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arioli T., Peng L., Betzner A. S., Burn J., Wittke W., Herth W., Camilleri C., Höfte H., Plazinski J., Birch R. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science. 1998 Jan 30;279(5351):717–720. doi: 10.1126/science.279.5351.717. [DOI] [PubMed] [Google Scholar]
  3. Brown M. P., Aidoo K. A., Vining L. C. A role for pabAB, a p-aminobenzoate synthase gene of Streptomyces venezuelae ISP5230, in chloramphenicol biosynthesis. Microbiology. 1996 Jun;142(Pt 6):1345–1355. doi: 10.1099/13500872-142-6-1345. [DOI] [PubMed] [Google Scholar]
  4. Brown R. M., Jr, Montezinos D. Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci U S A. 1976 Jan;73(1):143–147. doi: 10.1073/pnas.73.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Delmer D. P., Read S. M., Cooper G. Identification of a receptor protein in cotton fibers for the herbicide 2,6-dichlorobenzonitrile. Plant Physiol. 1987 Jun;84(2):415–420. doi: 10.1104/pp.84.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fujimoto K. Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci. 1995 Nov;108(Pt 11):3443–3449. doi: 10.1242/jcs.108.11.3443. [DOI] [PubMed] [Google Scholar]
  7. Giddings T. H., Jr, Brower D. L., Staehelin L. A. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol. 1980 Feb;84(2):327–339. doi: 10.1083/jcb.84.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gupta R. S., Golding G. B., Singh B. HSP70 phylogeny and the relationship between archaebacteria, eubacteria, and eukaryotes. J Mol Evol. 1994 Nov;39(5):537–540. doi: 10.1007/BF00173424. [DOI] [PubMed] [Google Scholar]
  9. HALL D. A., SAXL H. Human and other animal cellulose. Nature. 1960 Aug 13;187:547–550. doi: 10.1038/187547a0. [DOI] [PubMed] [Google Scholar]
  10. Kudlicka K., Brown Jr R. M. Cellulose and Callose Biosynthesis in Higher Plants (I. Solubilization and Separation of (1->3)- and (1->4)-[beta]-Glucan Synthase Activities from Mung Bean). Plant Physiol. 1997 Oct;115(2):643–656. doi: 10.1104/pp.115.2.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mueller S. C., Brown R. M., Jr Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol. 1980 Feb;84(2):315–326. doi: 10.1083/jcb.84.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Okuda K., Li L., Kudlicka K., Kuga S., Brown R. M., Jr [beta]-Glucan Synthesis in the Cotton Fiber (I. Identification of [beta]-1,4- and [beta]-1,3-Glucans Synthesized in Vitro). Plant Physiol. 1993 Apr;101(4):1131–1142. doi: 10.1104/pp.101.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pear J. R., Kawagoe Y., Schreckengost W. E., Delmer D. P., Stalker D. M. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12637–12642. doi: 10.1073/pnas.93.22.12637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sarma V. R., Silverton E. W., Davies D. R., Terry W. D. The three-dimensional structure at 6 A resolution of a human gamma Gl immunoglobulin molecule. J Biol Chem. 1971 Jun 10;246(11):3753–3759. [PubMed] [Google Scholar]
  15. Saxena I. M., Brown R. M., Jr, Fevre M., Geremia R. A., Henrissat B. Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action. J Bacteriol. 1995 Mar;177(6):1419–1424. doi: 10.1128/jb.177.6.1419-1424.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Saxena I. M., Kudlicka K., Okuda K., Brown R. M., Jr Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol. 1994 Sep;176(18):5735–5752. doi: 10.1128/jb.176.18.5735-5752.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Saxena I. M., Lin F. C., Brown R. M., Jr Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol Biol. 1990 Nov;15(5):673–683. doi: 10.1007/BF00016118. [DOI] [PubMed] [Google Scholar]
  18. Saxena I. M., Lin F. C., Brown R. M., Jr Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum. Plant Mol Biol. 1991 Jun;16(6):947–954. doi: 10.1007/BF00016067. [DOI] [PubMed] [Google Scholar]
  19. Shin H., Brown R. M., Jr GTPase activity and biochemical characterization of a recombinant cotton fiber annexin. Plant Physiol. 1999 Mar;119(3):925–934. doi: 10.1104/pp.119.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES