Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Nov;11(11):2203–2216. doi: 10.1105/tpc.11.11.2203

Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening

DA Brummell 1, MH Harpster 1, PM Civello 1, JM Palys 1, AB Bennett 1, P Dunsmuir 1
PMCID: PMC144123  PMID: 10559444

Abstract

The role of the ripening-specific expansin Exp1 protein in fruit softening and cell wall metabolism was investigated by suppression and overexpression of Exp1 in transgenic tomato plants. Fruit in which Exp1 protein accumulation was suppressed to 3% that of wild-type levels were firmer than controls throughout ripening. Suppression of Exp1 protein also substantially inhibited polyuronide depolymerization late in ripening but did not prevent the breakdown of structurally important hemicelluloses, a major contributor to softening. In contrast, fruit overexpressing high levels of recombinant Exp1 protein were much softer than controls, even in mature green fruit before ripening commenced. This softening was correlated with the precocious and extensive depolymerization of structural hemicelluloses, whereas polyuronide depolymerization was not altered. These data are consistent with there being at least three components to fruit softening and textural changes. One component is a relaxation of the wall directly mediated by Exp1, which indirectly limits part of a second component due to polyuronide depolymerization late in ripening, perhaps by controlling access of a pectinase to its substrate. The third component is caused by depolymerization of hemicelluloses, which occurs independently of or requires only very small amounts of Exp1 protein.

Full Text

The Full Text of this article is available as a PDF (371.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrowsmith D. A., de Silva J. Characterisation of two tomato fruit-expressed cDNAs encoding xyloglucan endo-transglycosylase. Plant Mol Biol. 1995 Jun;28(3):391–403. doi: 10.1007/BF00020389. [DOI] [PubMed] [Google Scholar]
  2. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  3. Brummell D. A., Hall B. D., Bennett A. B. Antisense suppression of tomato endo-1,4-beta-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol Biol. 1999 Jul;40(4):615–622. doi: 10.1023/a:1006269031452. [DOI] [PubMed] [Google Scholar]
  4. Brummell D. A., Harpster M. H., Dunsmuir P. Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol Biol. 1999 Jan;39(1):161–169. doi: 10.1023/a:1006130018931. [DOI] [PubMed] [Google Scholar]
  5. Brummell D. A., Labavitch J. M. Effect of Antisense Suppression of Endopolygalacturonase Activity on Polyuronide Molecular Weight in Ripening Tomato Fruit and in Fruit Homogenates. Plant Physiol. 1997 Oct;115(2):717–725. doi: 10.1104/pp.115.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carey A. T., Holt K., Picard S., Wilde R., Tucker G. A., Bird C. R., Schuch W., Seymour G. B. Tomato exo-(1-->4)-beta-D-galactanase. Isolation, changes during ripening in normal and mutant tomato fruit, and characterization of a related cDNA clone. Plant Physiol. 1995 Jul;108(3):1099–1107. doi: 10.1104/pp.108.3.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carpita N. C., Gibeaut D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993 Jan;3(1):1–30. doi: 10.1111/j.1365-313x.1993.tb00007.x. [DOI] [PubMed] [Google Scholar]
  8. Cho H. T., Kende H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell. 1997 Sep;9(9):1661–1671. doi: 10.1105/tpc.9.9.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cosgrove D. J., Bedinger P., Durachko D. M. Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6559–6564. doi: 10.1073/pnas.94.12.6559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cosgrove D. J. Cell wall loosening by expansins. Plant Physiol. 1998 Oct;118(2):333–339. doi: 10.1104/pp.118.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dellapenna D., Alexander D. C., Bennett A. B. Molecular cloning of tomato fruit polygalacturonase: Analysis of polygalacturonase mRNA levels during ripening. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6420–6424. doi: 10.1073/pnas.83.17.6420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gillaspy G., Ben-David H., Gruissem W. Fruits: A Developmental Perspective. Plant Cell. 1993 Oct;5(10):1439–1451. doi: 10.1105/tpc.5.10.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giovannoni J. J., DellaPenna D., Bennett A. B., Fischer R. L. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell. 1989 Jan;1(1):53–63. doi: 10.1105/tpc.1.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gonzalez-Bosch C., Brummell D. A., Bennett A. B. Differential Expression of Two Endo-1,4-[beta]-Glucanase Genes in Pericarp and Locules of Wild-Type and Mutant Tomato Fruit. Plant Physiol. 1996 Aug;111(4):1313–1319. doi: 10.1104/pp.111.4.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greene B., Walko R., Hake S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics. 1994 Dec;138(4):1275–1285. doi: 10.1093/genetics/138.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Harpster M. H., Brummell D. A., Dunsmuir P. Expression analysis of a ripening-specific, auxin-repressed endo-1, 4-beta-glucanase gene in strawberry. Plant Physiol. 1998 Dec;118(4):1307–1316. doi: 10.1104/pp.118.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Harpster M. H., Townsend J. A., Jones J. D., Bedbrook J., Dunsmuir P. Relative strengths of the 35S cauliflower mosaic virus, 1', 2', and nopaline synthase promoters in transformed tobacco sugarbeet and oilseed rape callus tissue. Mol Gen Genet. 1988 Apr;212(1):182–190. doi: 10.1007/BF00322463. [DOI] [PubMed] [Google Scholar]
  18. Harriman R. W., Tieman D. M., Handa A. K. Molecular cloning of tomato pectin methylesterase gene and its expression in rutgers, ripening inhibitor, nonripening, and never ripe tomato fruits. Plant Physiol. 1991 Sep;97(1):80–87. doi: 10.1104/pp.97.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Huber D. J., O'Donoghue E. M. Polyuronides in Avocado (Persea americana) and Tomato (Lycopersicon esculentum) Fruits Exhibit Markedly Different Patterns of Molecular Weight Downshifts during Ripening. Plant Physiol. 1993 Jun;102(2):473–480. doi: 10.1104/pp.102.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Keller E., Cosgrove D. J. Expansins in growing tomato leaves. Plant J. 1995 Dec;8(6):795–802. doi: 10.1046/j.1365-313x.1995.8060795.x. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lashbrook C. C., Gonzalez-Bosch C., Bennett A. B. Two divergent endo-beta-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Plant Cell. 1994 Oct;6(10):1485–1493. doi: 10.1105/tpc.6.10.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maclachlan G., Brady C. Endo-1,4-[beta]-Glucanase, Xyloglucanase, and Xyloglucan Endo-Transglycosylase Activities Versus Potential Substrates in Ripening Tomatoes. Plant Physiol. 1994 Jul;105(3):965–974. doi: 10.1104/pp.105.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McQueen-Mason S. J., Cosgrove D. J. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 1995 Jan;107(1):87–100. doi: 10.1104/pp.107.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. McQueen-Mason S. J., Fry S. C., Durachko D. M., Cosgrove D. J. The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls. Planta. 1993;190(3):327–331. doi: 10.1007/BF00196961. [DOI] [PubMed] [Google Scholar]
  26. McQueen-Mason S., Cosgrove D. J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6574–6578. doi: 10.1073/pnas.91.14.6574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McQueen-Mason S., Durachko D. M., Cosgrove D. J. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992 Nov;4:1425–1433. doi: 10.1105/tpc.4.11.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Napoli C., Lemieux C., Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell. 1990 Apr;2(4):279–289. doi: 10.1105/tpc.2.4.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rose J. K., Lee H. H., Bennett A. B. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5955–5960. doi: 10.1073/pnas.94.11.5955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shcherban T. Y., Shi J., Durachko D. M., Guiltinan M. J., McQueen-Mason S. J., Shieh M., Cosgrove D. J. Molecular cloning and sequence analysis of expansins--a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9245–9249. doi: 10.1073/pnas.92.20.9245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sheehy R. E., Kramer M., Hiatt W. R. Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8805–8809. doi: 10.1073/pnas.85.23.8805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith D. L., Starrett D. A., Gross K. C. A gene coding for tomato fruit beta-galactosidase II is expressed during fruit ripening. Cloning, characterization, and expression pattern. Plant Physiol. 1998 Jun;117(2):417–423. doi: 10.1104/pp.117.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tieman D. M., Handa A. K. Reduction in Pectin Methylesterase Activity Modifies Tissue Integrity and Cation Levels in Ripening Tomato (Lycopersicon esculentum Mill.) Fruits. Plant Physiol. 1994 Oct;106(2):429–436. doi: 10.1104/pp.106.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tieman D. M., Harriman R. W., Ramamohan G., Handa A. K. An Antisense Pectin Methylesterase Gene Alters Pectin Chemistry and Soluble Solids in Tomato Fruit. Plant Cell. 1992 Jun;4(6):667–679. doi: 10.1105/tpc.4.6.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tucker G. A., Robertson N. G., Grierson D. Changes in polygalacturonase isoenzymes during the 'ripening' of normal and mutant tomato fruit. Eur J Biochem. 1980 Nov;112(1):119–124. doi: 10.1111/j.1432-1033.1980.tb04993.x. [DOI] [PubMed] [Google Scholar]
  36. Waterhouse P. M., Graham M. W., Wang M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13959–13964. doi: 10.1073/pnas.95.23.13959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Watson C. F., Zheng L., DellaPenna D. Reduction of tomato polygalacturonase beta subunit expression affects pectin solubilization and degradation during fruit ripening. Plant Cell. 1994 Nov;6(11):1623–1634. doi: 10.1105/tpc.6.11.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wu Y., Sharp R. E., Durachko D. M., Cosgrove D. J. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol. 1996 Jul;111(3):765–772. doi: 10.1104/pp.111.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES