Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Nov;11(11):2217–2231. doi: 10.1105/tpc.11.11.2217

Structural and transcriptional comparative analysis of the S locus regions in two self-incompatible Brassica napus lines.

Y Cui 1, N Brugière 1, L Jackman 1, Y M Bi 1, S J Rothstein 1
PMCID: PMC144124  PMID: 10559445

Abstract

Self-incompatibility (SI) in Brassica is controlled by a single locus, termed the S locus. There is evidence that two of the S locus genes, SLG, which encodes a secreted glycoprotein, and SRK, which encodes a putative receptor kinase, are required for SI on the stigma side. The current model postulates that a pollen ligand recognizing the SLG/SRK receptors is encoded in the genomic region defined by the SLG and SRK genes. A fosmid contig of approximately 65 kb spanning the SLG-910 and SRK-910 genes was isolated from the Brassica napus W1 line. A new gene, SLL3, was identified using a novel approach combining cDNA subtraction and direct selection. This gene encodes a putative secreted small peptide and exists as multiple copies in the Brassica genome. Sequencing analysis of the 65-kb contig revealed seven additional genes and a transposon. None of these seven genes exhibited features expected of S genes on the pollen side. An approximately 88-kb contig of the A14 S region also was isolated from the B. napus T2 line and sequenced. Comparison of the two S regions revealed that (1) the gene organization downstream of SLG in both S haplotypes is highly colinear; (2) the distance between SLG-A14 and SRK-A14 genes is much larger than that between SLG-910 and SRK-910, with the intervening region filled with retroelements and haplotype-specific genes; and (3) the gene organization downstream of SRK in the two haplotypes is divergent. These observations lead us to propose that the SLG downstream region might be one border of the S locus and that the accumulation of heteromorphic sequences, such as retroelements as well as haplotype-unique genes, may act as a mechanism to suppress recombination between SLG and SRK.

Full Text

The Full Text of this article is available as a PDF (411.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bairoch A. The PROSITE dictionary of sites and patterns in proteins, its current status. Nucleic Acids Res. 1993 Jul 1;21(13):3097–3103. doi: 10.1093/nar/21.13.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennetzen J. L. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 1996 Sep;4(9):347–353. doi: 10.1016/0966-842x(96)10042-1. [DOI] [PubMed] [Google Scholar]
  4. Bevan M., Bancroft I., Bent E., Love K., Goodman H., Dean C., Bergkamp R., Dirkse W., Van Staveren M., Stiekema W. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature. 1998 Jan 29;391(6666):485–488. doi: 10.1038/35140. [DOI] [PubMed] [Google Scholar]
  5. Boyes D. C., Nasrallah J. B. An anther-specific gene encoded by an S locus haplotype of Brassica produces complementary and differentially regulated transcripts. Plant Cell. 1995 Aug;7(8):1283–1294. doi: 10.1105/tpc.7.8.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyes D. C., Nasrallah J. B. Physical linkage of the SLG and SRK genes at the self-incompatibility locus of Brassica oleracea. Mol Gen Genet. 1993 Jan;236(2-3):369–373. doi: 10.1007/BF00277135. [DOI] [PubMed] [Google Scholar]
  7. Boyes D. C., Nasrallah M. E., Vrebalov J., Nasrallah J. B. The self-incompatibility (S) haplotypes of Brassica contain highly divergent and rearranged sequences of ancient origin. Plant Cell. 1997 Feb;9(2):237–247. doi: 10.1105/tpc.9.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burge C. B., Karlin S. Finding the genes in genomic DNA. Curr Opin Struct Biol. 1998 Jun;8(3):346–354. doi: 10.1016/s0959-440x(98)80069-9. [DOI] [PubMed] [Google Scholar]
  9. Cabrillac D., Delorme V., Garin J., Ruffio-Châble V., Giranton J. L., Dumas C., Gaude T., Cock J. M. The S15 self-incompatibility haplotype in Brassica oleracea includes three S gene family members expressed in stigmas. Plant Cell. 1999 May;11(5):971–986. doi: 10.1105/tpc.11.5.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Camargo L. E., Savides L., Jung G., Nienhuis J., Osborn T. C. Location of the self-incompatibility locus in an RFLP and RAPD map of Brassica oleracea. J Hered. 1997 Jan-Feb;88(1):57–60. doi: 10.1093/oxfordjournals.jhered.a023057. [DOI] [PubMed] [Google Scholar]
  11. Carthew R. W., Rubin G. M. seven in absentia, a gene required for specification of R7 cell fate in the Drosophila eye. Cell. 1990 Nov 2;63(3):561–577. doi: 10.1016/0092-8674(90)90452-k. [DOI] [PubMed] [Google Scholar]
  12. Conner J. A., Conner P., Nasrallah M. E., Nasrallah J. B. Comparative mapping of the Brassica S locus region and its homeolog in Arabidopsis. Implications for the evolution of mating systems in the Brassicaceae. Plant Cell. 1998 May;10(5):801–812. doi: 10.1105/tpc.10.5.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Delorme V., Giranton J. L., Hatzfeld Y., Friry A., Heizmann P., Ariza M. J., Dumas C., Gaude T., Cock J. M. Characterization of the S locus genes, SLG and SRK, of the Brassica S3 haplotype: identification of a membrane-localized protein encoded by the S locus receptor kinase gene. Plant J. 1995 Mar;7(3):429–440. doi: 10.1046/j.1365-313x.1995.7030429.x. [DOI] [PubMed] [Google Scholar]
  14. Diatchenko L., Lau Y. F., Campbell A. P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N., Sverdlov E. D. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6025–6030. doi: 10.1073/pnas.93.12.6025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fedoroff N. V. About maize transposable elements and development. Cell. 1989 Jan 27;56(2):181–191. doi: 10.1016/0092-8674(89)90891-x. [DOI] [PubMed] [Google Scholar]
  16. Ferris P. J., Goodenough U. W. The mating-type locus of Chlamydomonas reinhardtii contains highly rearranged DNA sequences. Cell. 1994 Mar 25;76(6):1135–1145. doi: 10.1016/0092-8674(94)90389-1. [DOI] [PubMed] [Google Scholar]
  17. Friedman A. M., Long S. R., Brown S. E., Buikema W. J., Ausubel F. M. Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene. 1982 Jun;18(3):289–296. doi: 10.1016/0378-1119(82)90167-6. [DOI] [PubMed] [Google Scholar]
  18. Gierl A. The En/Spm transposable element of maize. Curr Top Microbiol Immunol. 1996;204:145–159. doi: 10.1007/978-3-642-79795-8_7. [DOI] [PubMed] [Google Scholar]
  19. Glavin T. L., Goring D. R., Schafer U., Rothstein S. J. Features of the extracellular domain of the S-locus receptor kinase from Brassica. Mol Gen Genet. 1994 Sep 28;244(6):630–637. doi: 10.1007/BF00282753. [DOI] [PubMed] [Google Scholar]
  20. Goring D. R., Banks P., Beversdorf W. D., Rothstein S. J. Use of the polymerase chain reaction to isolate an S-locus glycoprotein cDNA introgressed from Brassica campestris into B. napus ssp. oleifera. Mol Gen Genet. 1992 Aug;234(2):185–192. doi: 10.1007/BF00283838. [DOI] [PubMed] [Google Scholar]
  21. Goring D. R., Banks P., Fallis L., Baszczynski C. L., Beversdorf W. D., Rothstein S. J. Identification of an S-locus glycoprotein allele introgressed from B. napus ssp. rapifera to B. napus ssp. oleifera. Plant J. 1992 Nov;2(6):983–989. [PubMed] [Google Scholar]
  22. Goring D. R., Glavin T. L., Schafer U., Rothstein S. J. An S receptor kinase gene in self-compatible Brassica napus has a 1-bp deletion. Plant Cell. 1993 May;5(5):531–539. doi: 10.1105/tpc.5.5.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Goring D. R., Rothstein S. J. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell. 1992 Oct;4(10):1273–1281. doi: 10.1105/tpc.4.10.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gurskaya N. G., Diatchenko L., Chenchik A., Siebert P. D., Khaspekov G. L., Lukyanov K. A., Vagner L. L., Ermolaeva O. D., Lukyanov S. A., Sverdlov E. D. Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Anal Biochem. 1996 Aug 15;240(1):90–97. doi: 10.1006/abio.1996.0334. [DOI] [PubMed] [Google Scholar]
  25. Jones J. D., Dunsmuir P., Bedbrook J. High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J. 1985 Oct;4(10):2411–2418. doi: 10.1002/j.1460-2075.1985.tb03949.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kandasamy M. K., Paolillo D. J., Faraday C. D., Nasrallah J. B., Nasrallah M. E. The S-locus specific glycoproteins of Brassica accumulate in the cell wall of developing stigma papillae. Dev Biol. 1989 Aug;134(2):462–472. doi: 10.1016/0012-1606(89)90119-x. [DOI] [PubMed] [Google Scholar]
  27. Kim U. J., Shizuya H., de Jong P. J., Birren B., Simon M. I. Stable propagation of cosmid sized human DNA inserts in an F factor based vector. Nucleic Acids Res. 1992 Mar 11;20(5):1083–1085. doi: 10.1093/nar/20.5.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A., Borchert S. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997 Nov 20;390(6657):249–256. doi: 10.1038/36786. [DOI] [PubMed] [Google Scholar]
  29. Kusaba M., Nishio T. Comparative analysis of S haplotypes with very similar SLG alleles in Brassica rapa and Brassica oleracea. Plant J. 1999 Jan;17(1):83–91. doi: 10.1046/j.1365-313x.1999.00355.x. [DOI] [PubMed] [Google Scholar]
  30. Kusaba M., Nishio T., Satta Y., Hinata K., Ockendon D. Striking sequence similarity in inter- and intra-specific comparisons of class I SLG alleles from Brassica oleracea and Brassica campestris: implications for the evolution and recognition mechanism. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7673–7678. doi: 10.1073/pnas.94.14.7673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Le Guen L., Thomas M., Bianchi M., Halford N. G., Kreis M. Structure and expression of a gene from Arabidopsis thaliana encoding a protein related to SNF1 protein kinase. Gene. 1992 Oct 21;120(2):249–254. doi: 10.1016/0378-1119(92)90100-4. [DOI] [PubMed] [Google Scholar]
  32. Lovett M. Fishing for complements: finding genes by direct selection. Trends Genet. 1994 Oct;10(10):352–357. doi: 10.1016/0168-9525(94)90131-7. [DOI] [PubMed] [Google Scholar]
  33. Meinnel T., Blanquet S. Characterization of the Thermus thermophilus locus encoding peptide deformylase and methionyl-tRNA(fMet) formyltransferase. J Bacteriol. 1994 Dec;176(23):7387–7390. doi: 10.1128/jb.176.23.7387-7390.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Murphy D. J., Ross J. H. Biosynthesis, targeting and processing of oleosin-like proteins, which are major pollen coat components in Brassica napus. Plant J. 1998 Jan;13(1):1–16. [PubMed] [Google Scholar]
  35. Nacken W. K., Piotrowiak R., Saedler H., Sommer H. The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion. Mol Gen Genet. 1991 Aug;228(1-2):201–208. doi: 10.1007/BF00282466. [DOI] [PubMed] [Google Scholar]
  36. Nasrallah J. B., Nasrallah M. E. Pollen[mdash]Stigma Signaling in the Sporophytic Self-Incompatibility Response. Plant Cell. 1993 Oct;5(10):1325–1335. doi: 10.1105/tpc.5.10.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ozeki Y., Davies E., Takeda J. Somatic variation during long-term subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia-lyase (PAL) gene. Mol Gen Genet. 1997 Apr 28;254(4):407–416. doi: 10.1007/s004380050433. [DOI] [PubMed] [Google Scholar]
  38. Pastuglia M., Ruffio-Châble V., Delorme V., Gaude T., Dumas C., Cock J. M. A functional S locus anther gene is not required for the self-incompatibility response in Brassica oleracea. Plant Cell. 1997 Nov;9(11):2065–2076. doi: 10.1105/tpc.9.11.2065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pereira A., Schwarz-Sommer Z., Gierl A., Bertram I., Peterson P. A., Saedler H. Genetic and molecular analysis of the Enhancer (En) transposable element system of Zea mays. EMBO J. 1985 Jan;4(1):17–23. doi: 10.1002/j.1460-2075.1985.tb02311.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pélissier T., Tutois S., Deragon J. M., Tourmente S., Genestier S., Picard G. Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol. 1995 Nov;29(3):441–452. doi: 10.1007/BF00020976. [DOI] [PubMed] [Google Scholar]
  41. Pélissier T., Tutois S., Tourmente S., Deragon J. M., Picard G. DNA regions flanking the major Arabidopsis thaliana satellite are principally enriched in Athila retroelement sequences. Genetica. 1996 Mar;97(2):141–151. doi: 10.1007/BF00054621. [DOI] [PubMed] [Google Scholar]
  42. SanMiguel P., Gaut B. S., Tikhonov A., Nakajima Y., Bennetzen J. L. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998 Sep;20(1):43–45. doi: 10.1038/1695. [DOI] [PubMed] [Google Scholar]
  43. SanMiguel P., Tikhonov A., Jin Y. K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P. S., Edwards K. J., Lee M., Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996 Nov 1;274(5288):765–768. doi: 10.1126/science.274.5288.765. [DOI] [PubMed] [Google Scholar]
  44. Sato T., Thorsness M. K., Kandasamy M. K., Nishio T., Hirai M., Nasrallah J. B., Nasrallah M. E. Activity of an S Locus Gene Promoter in Pistils and Anthers of Transgenic Brassica. Plant Cell. 1991 Sep;3(9):867–876. doi: 10.1105/tpc.3.9.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Scott R., Dagless E., Hodge R., Paul W., Soufleri I., Draper J. Patterns of gene expression in developing anthers of Brassica napus. Plant Mol Biol. 1991 Aug;17(2):195–207. doi: 10.1007/BF00039494. [DOI] [PubMed] [Google Scholar]
  46. Stahl RJ, Arnoldo M, Glavin TL, Goring DR, Rothstein SJ. The self-incompatibility phenotype in brassica is altered by the transformation of a mutant S locus receptor kinase . Plant Cell. 1998 Feb;10(2):209–218. doi: 10.1105/tpc.10.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Stein J. C., Dixit R., Nasrallah M. E., Nasrallah J. B. SRK, the stigma-specific S locus receptor kinase of Brassica, is targeted to the plasma membrane in transgenic tobacco. Plant Cell. 1996 Mar;8(3):429–445. doi: 10.1105/tpc.8.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Stein J. C., Howlett B., Boyes D. C., Nasrallah M. E., Nasrallah J. B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8816–8820. doi: 10.1073/pnas.88.19.8816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Stein J. L., Marsh T. L., Wu K. Y., Shizuya H., DeLong E. F. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol. 1996 Feb;178(3):591–599. doi: 10.1128/jb.178.3.591-599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Stephens R. S., Kalman S., Lammel C., Fan J., Marathe R., Aravind L., Mitchell W., Olinger L., Tatusov R. L., Zhao Q. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science. 1998 Oct 23;282(5389):754–759. doi: 10.1126/science.282.5389.754. [DOI] [PubMed] [Google Scholar]
  51. Thompson H. L., Schmidt R., Dean C. Identification and distribution of seven classes of middle-repetitive DNA in the Arabidopsis thaliana genome. Nucleic Acids Res. 1996 Aug 1;24(15):3017–3022. doi: 10.1093/nar/24.15.3017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tomkinson A. E., Roberts E., Daly G., Totty N. F., Lindahl T. Three distinct DNA ligases in mammalian cells. J Biol Chem. 1991 Nov 15;266(32):21728–21735. [PubMed] [Google Scholar]
  54. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  55. Wessler S. R., Bureau T. E., White S. E. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995 Dec;5(6):814–821. doi: 10.1016/0959-437x(95)80016-x. [DOI] [PubMed] [Google Scholar]
  56. Wright D. A., Voytas D. F. Potential retroviruses in plants: Tat1 is related to a group of Arabidopsis thaliana Ty3/gypsy retrotransposons that encode envelope-like proteins. Genetics. 1998 Jun;149(2):703–715. doi: 10.1093/genetics/149.2.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Yu K., Schafer U., Glavin T. L., Goring D. R., Rothstein S. J. Molecular characterization of the S locus in two self-incompatible Brassica napus lines. Plant Cell. 1996 Dec;8(12):2369–2380. doi: 10.1105/tpc.8.12.2369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES