Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Nov;11(11):2123–2137. doi: 10.1105/tpc.11.11.2123

Genetic regulation of vascular tissue patterning in Arabidopsis.

F M Carland 1, B L Berg 1, J N FitzGerald 1, S Jinamornphongs 1, T Nelson 1, B Keith 1
PMCID: PMC144128  PMID: 10559439

Abstract

Plants transport water and nutrients through a complex vascular network comprised of interconnected, specialized cell types organized in discrete bundles. To identify genetic determinants of vascular tissue patterning, we conducted a screen for mutants with altered vascular bundle organization in Arabidopsis cotyledons. Mutations in two genes, CVP1 and CVP2 (for cotyledon vascular pattern), specifically disrupt the normal pattern of vascular bundles in cotyledons, mature leaves, and inflorescence stems. The spatial distribution of the procambium, the precursor to mature vascular tissue, is altered in cvp1 and cvp2 embryos, suggesting that CVP1 and CVP2 act at a very early step in vascular patterning. Similarly, in developing stems of cvp1 and leaves of cvp2, the pattern of vascular differentiation is defective, but the maturation of individual vascular cells appears to be normal. There are no discernible alterations in cell morphology in cvp2 mutants. In contrast, cvp1 mutants are defective in directional orientation of the provascular strand, resulting in a failure to establish uniformly aligned vascular cells, and they also show a reduction in vascular cell elongation. Neither cvp1 nor cvp2 mutants displayed altered auxin perception, biosynthesis, or transport, suggesting that auxin metabolism is not generally affected in these mutants.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Candela H., Martínez-Laborda A., Micol J. L. Venation pattern formation in Arabidopsis thaliana vegetative leaves. Dev Biol. 1999 Jan 1;205(1):205–216. doi: 10.1006/dbio.1998.9111. [DOI] [PubMed] [Google Scholar]
  2. Carland F. M., McHale N. A. LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development. 1996 Jun;122(6):1811–1819. doi: 10.1242/dev.122.6.1811. [DOI] [PubMed] [Google Scholar]
  3. Chen K. H., Miller A. N., Patterson G. W., Cohen J. D. A Rapid and Simple Procedure for Purification of Indole-3-Acetic Acid Prior to GC-SIM-MS Analysis. Plant Physiol. 1988 Mar;86(3):822–825. doi: 10.1104/pp.86.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen R., Hilson P., Sedbrook J., Rosen E., Caspar T., Masson P. H. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15112–15117. doi: 10.1073/pnas.95.25.15112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gälweiler L., Guan C., Müller A., Wisman E., Mendgen K., Yephremov A., Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science. 1998 Dec 18;282(5397):2226–2230. doi: 10.1126/science.282.5397.2226. [DOI] [PubMed] [Google Scholar]
  6. Hardtke C. S., Berleth T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 1998 Mar 2;17(5):1405–1411. doi: 10.1093/emboj/17.5.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jegla D. E., Sussex I. M. Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed. Dev Biol. 1989 Jan;131(1):215–225. doi: 10.1016/s0012-1606(89)80053-3. [DOI] [PubMed] [Google Scholar]
  8. Kim J., Harter K., Theologis A. Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11786–11791. doi: 10.1073/pnas.94.22.11786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kinsman E. A., Pyke K. A. Bundle sheath cells and cell-specific plastid development in Arabidopsis leaves. Development. 1998 May;125(10):1815–1822. doi: 10.1242/dev.125.10.1815. [DOI] [PubMed] [Google Scholar]
  10. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  11. Last R. L., Bissinger P. H., Mahoney D. J., Radwanski E. R., Fink G. R. Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes. Plant Cell. 1991 Apr;3(4):345–358. doi: 10.1105/tpc.3.4.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lincoln C., Britton J. H., Estelle M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell. 1990 Nov;2(11):1071–1080. doi: 10.1105/tpc.2.11.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Luschnig C., Gaxiola R. A., Grisafi P., Fink G. R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998 Jul 15;12(14):2175–2187. doi: 10.1101/gad.12.14.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Müller A., Guan C., Gälweiler L., Tänzler P., Huijser P., Marchant A., Parry G., Bennett M., Wisman E., Palme K. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998 Dec 1;17(23):6903–6911. doi: 10.1093/emboj/17.23.6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nelson T., Dengler N. Leaf Vascular Pattern Formation. Plant Cell. 1997 Jul;9(7):1121–1135. doi: 10.1105/tpc.9.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Normanly J., Cohen J. D., Fink G. R. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10355–10359. doi: 10.1073/pnas.90.21.10355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Okada K., Ueda J., Komaki M. K., Bell C. J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991 Jul;3(7):677–684. doi: 10.1105/tpc.3.7.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Przemeck G. K., Mattsson J., Hardtke C. S., Sung Z. R., Berleth T. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta. 1996;200(2):229–237. doi: 10.1007/BF00208313. [DOI] [PubMed] [Google Scholar]
  19. Romano C. P., Hein M. B., Klee H. J. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev. 1991 Mar;5(3):438–446. doi: 10.1101/gad.5.3.438. [DOI] [PubMed] [Google Scholar]
  20. Sessions A., Nemhauser J. L., McColl A., Roe J. L., Feldmann K. A., Zambryski P. C. ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development. 1997 Nov;124(22):4481–4491. doi: 10.1242/dev.124.22.4481. [DOI] [PubMed] [Google Scholar]
  21. Timpte C., Wilson A. K., Estelle M. The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics. 1994 Dec;138(4):1239–1249. doi: 10.1093/genetics/138.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ulmasov T., Hagen G., Guilfoyle T. J. ARF1, a transcription factor that binds to auxin response elements. Science. 1997 Jun 20;276(5320):1865–1868. doi: 10.1126/science.276.5320.1865. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES