Abstract
The actin cytoskeleton is absolutely required for pollen germination and tube growth, but little is known about the regulation of actin polymer concentrations or dynamics in pollen. Here, we report that latrunculin B (LATB), a potent inhibitor of actin polymerization, had effects on pollen that were distinct from those of cytochalasin D. The equilibrium dissociation constant measured for LATB binding to maize pollen actin was determined to be 74 nM. This high affinity for pollen actin suggested that treatment of pollen with LATB would have marked effects on actin function. Indeed, LATB inhibited maize pollen germination half-maximally at 50 nM, yet it blocked pollen tube growth at one-tenth of that concentration. Low concentrations of LATB also caused partial disruption of the actin cytoskeleton in germinated maize pollen, as visualized by light microscopy and fluorescent-phalloidin staining. The amounts of filamentous actin (F-actin) in pollen were quantified by measuring phalloidin binding sites, a sensitive assay that had not been used previously for plant cells. The amount of F-actin in maize pollen increased slightly upon germination, whereas the total actin protein level did not change. LATB treatment caused a dose-dependent depolymerization of F-actin in populations of maize pollen grains and tubes. Moreover, the same concentrations of LATB caused similar depolymerization in pollen grains before germination and in pollen tubes. These data indicate that the increased sensitivity of pollen tube growth to LATB was not due to general destabilization of the actin cytoskeleton or to decreases in F-actin amounts after germination. We postulate that germination is less sensitive to LATB than tube extension because the presence of a small population of LATB-sensitive actin filaments is critical for maintenance of tip growth but not for germination of pollen, or because germination is less sensitive to partial depolymerization of the actin cytoskeleton.
Full Text
The Full Text of this article is available as a PDF (724.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersland J. M., Jagendorf A. T., Parthasarathy M. V. The Isolation of Actin from Pea Roots by DNase I Affinity Chromatography. Plant Physiol. 1992 Dec;100(4):1716–1723. doi: 10.1104/pp.100.4.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ayscough K. R., Stryker J., Pokala N., Sanders M., Crews P., Drubin D. G. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol. 1997 Apr 21;137(2):399–416. doi: 10.1083/jcb.137.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bedinger P. The remarkable biology of pollen. Plant Cell. 1992 Aug;4(8):879–887. doi: 10.1105/tpc.4.8.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bibikova T. N., Blancaflor E. B., Gilroy S. Microtubules regulate tip growth and orientation in root hairs of Arabidopsis thaliana. Plant J. 1999 Mar;17(6):657–665. doi: 10.1046/j.1365-313x.1999.00415.x. [DOI] [PubMed] [Google Scholar]
- Blikstad I., Markey F., Carlsson L., Persson T., Lindberg U. Selective assay of monomeric and filamentous actin in cell extracts, using inhibition of deoxyribonuclease I. Cell. 1978 Nov;15(3):935–943. doi: 10.1016/0092-8674(78)90277-5. [DOI] [PubMed] [Google Scholar]
- Brown S. S., Spudich J. A. Cytochalasin inhibits the rate of elongation of actin filament fragments. J Cell Biol. 1979 Dec;83(3):657–662. doi: 10.1083/jcb.83.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casella J. F., Flanagan M. D., Lin S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature. 1981 Sep 24;293(5830):302–305. doi: 10.1038/293302a0. [DOI] [PubMed] [Google Scholar]
- Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper J. A., Pollard T. D. Methods to measure actin polymerization. Methods Enzymol. 1982;85(Pt B):182–210. doi: 10.1016/0076-6879(82)85021-0. [DOI] [PubMed] [Google Scholar]
- Coué M., Brenner S. L., Spector I., Korn E. D. Inhibition of actin polymerization by latrunculin A. FEBS Lett. 1987 Mar 23;213(2):316–318. doi: 10.1016/0014-5793(87)81513-2. [DOI] [PubMed] [Google Scholar]
- Fox J. E., Phillips D. R. Inhibition of actin polymerization in blood platelets by cytochalasins. Nature. 1981 Aug 13;292(5824):650–652. doi: 10.1038/292650a0. [DOI] [PubMed] [Google Scholar]
- Gibbon B. C., Ren H., Staiger C. J. Characterization of maize (Zea mays) pollen profilin function in vitro and in live cells. Biochem J. 1997 Nov 1;327(Pt 3):909–915. doi: 10.1042/bj3270909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbon B. C., Zonia L. E., Kovar D. R., Hussey P. J., Staiger C. J. Pollen profilin function depends on interaction with proline-rich motifs. Plant Cell. 1998 Jun;10(6):981–993. doi: 10.1105/tpc.10.6.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goddette D. W., Frieden C. Actin polymerization. The mechanism of action of cytochalasin D. J Biol Chem. 1986 Dec 5;261(34):15974–15980. [PubMed] [Google Scholar]
- Gupta GD, Heath IB. Actin Disruption by Latrunculin B Causes Turgor-Related Changes in Tip Growth of Saprolegnia ferax Hyphae. Fungal Genet Biol. 1997 Feb;21(1):64–75. doi: 10.1006/fgbi.1997.0957. [DOI] [PubMed] [Google Scholar]
- Hable W. E., Kropf D. L. Roles of secretion and the cytoskeleton in cell adhesion and polarity establishment in Pelvetia compressa zygotes. Dev Biol. 1998 Jun 1;198(1):45–56. [PubMed] [Google Scholar]
- Haugwitz M., Noegel A. A., Karakesisoglou J., Schleicher M. Dictyostelium amoebae that lack G-actin-sequestering profilins show defects in F-actin content, cytokinesis, and development. Cell. 1994 Oct 21;79(2):303–314. doi: 10.1016/0092-8674(94)90199-6. [DOI] [PubMed] [Google Scholar]
- Howard T. H., Oresajo C. O. A method for quantifying F-actin in chemotactic peptide activated neutrophils: study of the effect of tBOC peptide. Cell Motil. 1985;5(6):545–557. doi: 10.1002/cm.970050609. [DOI] [PubMed] [Google Scholar]
- Karakesisoglou I., Schleicher M., Gibbon B. C., Staiger C. J. Plant profilins rescue the aberrant phenotype of profilin-deficient Dictyostelium cells. Cell Motil Cytoskeleton. 1996;34(1):36–47. doi: 10.1002/(SICI)1097-0169(1996)34:1<36::AID-CM4>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Kost B., Spielhofer P., Chua N. H. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 1998 Nov;16(3):393–401. doi: 10.1046/j.1365-313x.1998.00304.x. [DOI] [PubMed] [Google Scholar]
- Lin J. J., Dickinson D. B. Ability of Pollen to Germinate prior to Anthesis and Effect of Desiccation on Germination. Plant Physiol. 1984 Mar;74(3):746–748. doi: 10.1104/pp.74.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu X., Yen L. F. Purification and characterization of actin from maize pollen. Plant Physiol. 1992 Jul;99(3):1151–1155. doi: 10.1104/pp.99.3.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Love J., Brownlee C., Trewavas A. J. Ca2+ and Calmodulin Dynamics during Photopolarization in Fucus serratus Zygotes. Plant Physiol. 1997 Sep;115(1):249–261. doi: 10.1104/pp.115.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mascarenhas J. P., Lafountain J. Protoplasmic streaming, cytochalasin B, and growth of the pollen tube. Tissue Cell. 1972;4(1):11–14. doi: 10.1016/s0040-8166(72)80002-8. [DOI] [PubMed] [Google Scholar]
- Picton J. M., Steer M. W. Determination of secretory vesicle production rates by dictyosomes in pollen tubes of Tradescantia using cytochalasin D. J Cell Sci. 1981 Jun;49:261–272. doi: 10.1242/jcs.49.1.261. [DOI] [PubMed] [Google Scholar]
- Ren H., Gibbon B. C., Ashworth S. L., Sherman D. M., Yuan M., Staiger C. J. Actin Purified from Maize Pollen Functions in Living Plant Cells. Plant Cell. 1997 Aug;9(8):1445–1457. doi: 10.1105/tpc.9.8.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiefelbein J. W., Somerville C. Genetic Control of Root Hair Development in Arabidopsis thaliana. Plant Cell. 1990 Mar;2(3):235–243. doi: 10.1105/tpc.2.3.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southwick F. S., Dabiri G. A., Paschetto M., Zigmond S. H. Polymorphonuclear leukocyte adherence induces actin polymerization by a transduction pathway which differs from that used by chemoattractants. J Cell Biol. 1989 Oct;109(4 Pt 1):1561–1569. doi: 10.1083/jcb.109.4.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spector I., Shochet N. R., Blasberger D., Kashman Y. Latrunculins--novel marine macrolides that disrupt microfilament organization and affect cell growth: I. Comparison with cytochalasin D. Cell Motil Cytoskeleton. 1989;13(3):127–144. doi: 10.1002/cm.970130302. [DOI] [PubMed] [Google Scholar]
- Spector I., Shochet N. R., Kashman Y., Groweiss A. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science. 1983 Feb 4;219(4584):493–495. doi: 10.1126/science.6681676. [DOI] [PubMed] [Google Scholar]
- Tang X. J., Lancelle S. A., Hepler P. K. Fluorescence microscopic localization of actin in pollen tubes: comparison of actin antibody and phalloidin staining. Cell Motil Cytoskeleton. 1989;12(4):216–224. doi: 10.1002/cm.970120404. [DOI] [PubMed] [Google Scholar]
- Taylor Loverine P., Hepler Peter K. POLLEN GERMINATION AND TUBE GROWTH. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):461–491. doi: 10.1146/annurev.arplant.48.1.461. [DOI] [PubMed] [Google Scholar]
- Vidali L., Hepler P. K. Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskeleton. 1997;36(4):323–338. doi: 10.1002/(SICI)1097-0169(1997)36:4<323::AID-CM3>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Wymer C. L., Bibikova T. N., Gilroy S. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J. 1997 Aug;12(2):427–439. doi: 10.1046/j.1365-313x.1997.12020427.x. [DOI] [PubMed] [Google Scholar]
- Yeh J., Haarer B. K. Profilin is required for the normal timing of actin polymerization in response to thermal stress. FEBS Lett. 1996 Dec 2;398(2-3):303–307. doi: 10.1016/s0014-5793(96)01259-8. [DOI] [PubMed] [Google Scholar]