Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Dec;11(12):2317–2329. doi: 10.1105/tpc.11.12.2317

Linker histones play a role in male meiosis and the development of pollen grains in tobacco.

M Prymakowska-Bosak 1, M R Przewłoka 1, J Slusarczyk 1, M Kuraś 1, J Lichota 1, B Kiliańczyk 1, A Jerzmanowski 1
PMCID: PMC144134  PMID: 10590161

Abstract

To examine the function of linker histone variants, we produced transgenic tobacco plants in which major somatic histone variants H1A and H1B were present at approximately 25% of their usual amounts in tobacco chromatin. The decrease in these major variants was accompanied by a compensatory increase in the four minor variants, namely, H1C to H1F. These minor variants are smaller and less highly charged than the major variants. This change offered a unique opportunity to examine the consequences to a plant of major remodeling of its chromatin set of linker histones. Plants with markedly altered proportions of H1 variants retained normal nucleosome spacing, but their chromosomes were less tightly packed than those of control plants. The transgenic plants grew normally but showed characteristic aberrations in flower development and were almost completely male sterile. These features correlated with changes in the temporal but not the spatial pattern of expression of developmental genes that could be linked to the abnormal flower phenotypes. Preceding these changes in flower morphology were strong aberrations in male gametogenesis. The earliest symptoms may have resulted from disturbances in correct pairing or segregation of homologous chromosomes during meiosis. No aberrations were observed during mitosis. We conclude that in plants, the physiological stoichiometry and distribution of linker histone variants are crucial for directing male meiosis and the subsequent development of functional pollen grains.

Full Text

The Full Text of this article is available as a PDF (900.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ascenzi R., Gantt J. S. A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Mol Biol. 1997 Jul;34(4):629–641. doi: 10.1023/a:1005886011722. [DOI] [PubMed] [Google Scholar]
  3. Bouvet P., Dimitrov S., Wolffe A. P. Specific regulation of Xenopus chromosomal 5S rRNA gene transcription in vivo by histone H1. Genes Dev. 1994 May 15;8(10):1147–1159. doi: 10.1101/gad.8.10.1147. [DOI] [PubMed] [Google Scholar]
  4. Cairns B. R. Chromatin remodeling machines: similar motors, ulterior motives. Trends Biochem Sci. 1998 Jan;23(1):20–25. doi: 10.1016/s0968-0004(97)01160-2. [DOI] [PubMed] [Google Scholar]
  5. Clarke H. J., Oblin C., Bustin M. Developmental regulation of chromatin composition during mouse embryogenesis: somatic histone H1 is first detectable at the 4-cell stage. Development. 1992 Jul;115(3):791–799. doi: 10.1242/dev.115.3.791. [DOI] [PubMed] [Google Scholar]
  6. Cole R. D. Purification and analysis of H1 histones. Methods Enzymol. 1989;170:524–532. doi: 10.1016/0076-6879(89)70062-8. [DOI] [PubMed] [Google Scholar]
  7. Dernburg A. F., Sedat J. W., Hawley R. S. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell. 1996 Jul 12;86(1):135–146. doi: 10.1016/s0092-8674(00)80084-7. [DOI] [PubMed] [Google Scholar]
  8. Gantt J. S., Lenvik T. R. Arabidopsis thaliana H1 histones. Analysis of two members of a small gene family. Eur J Biochem. 1991 Dec 18;202(3):1029–1039. doi: 10.1111/j.1432-1033.1991.tb16466.x. [DOI] [PubMed] [Google Scholar]
  9. Goldberg R. B., Beals T. P., Sanders P. M. Anther development: basic principles and practical applications. Plant Cell. 1993 Oct;5(10):1217–1229. doi: 10.1105/tpc.5.10.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hill T. A., Day C. D., Zondlo S. C., Thackeray A. G., Irish V. F. Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development. 1998 May;125(9):1711–1721. doi: 10.1242/dev.125.9.1711. [DOI] [PubMed] [Google Scholar]
  11. Karpen G. H., Le M. H., Le H. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science. 1996 Jul 5;273(5271):118–122. doi: 10.1126/science.273.5271.118. [DOI] [PubMed] [Google Scholar]
  12. Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCormick S. Male Gametophyte Development. Plant Cell. 1993 Oct;5(10):1265–1275. doi: 10.1105/tpc.5.10.1265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McKee B. D. The license to pair: identification of meiotic pairing sites in Drosophila. Chromosoma. 1996 Sep;105(3):135–141. doi: 10.1007/BF02509494. [DOI] [PubMed] [Google Scholar]
  15. McKim K. S., Hawley R. S. Chromosomal control of meiotic cell division. Science. 1995 Dec 8;270(5242):1595–1601. doi: 10.1126/science.270.5242.1595. [DOI] [PubMed] [Google Scholar]
  16. Mishima Y., Kaizu H., Kominami R. Pairing of DNA fragments containing (GGA:TCC)n repeats and promotion by high mobility group protein 1 and histone H1. J Biol Chem. 1997 Oct 17;272(42):26578–26584. doi: 10.1074/jbc.272.42.26578. [DOI] [PubMed] [Google Scholar]
  17. Newrock K. M., Alfageme C. R., Nardi R. V., Cohen L. H. Histone changes during chromatin remodeling in embryogenesis. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):421–431. doi: 10.1101/sqb.1978.042.01.045. [DOI] [PubMed] [Google Scholar]
  18. Oakeley E. J., Podestà A., Jost J. P. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11721–11725. doi: 10.1073/pnas.94.21.11721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Peirson B. N., Bowling S. E., Makaroff C. A. A defect in synapsis causes male sterility in a T-DNA-tagged Arabidopsis thaliana mutant. Plant J. 1997 Apr;11(4):659–669. doi: 10.1046/j.1365-313x.1997.11040659.x. [DOI] [PubMed] [Google Scholar]
  20. Prymakowska-Bosak M., Przewłoka M. R., Iwkiewicz J., Egierszdorff S., Kuraś M., Chaubet N., Gigot C., Spiker S., Jerzmanowski A. Histone H1 overexpressed to high level in tobacco affects certain developmental programs but has limited effect on basal cellular functions. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10250–10255. doi: 10.1073/pnas.93.19.10250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Renauld H. Heterochromatin: a meiotic matchmaker? Trends Cell Biol. 1997 May;7(5):201–205. doi: 10.1016/S0962-8924(97)01034-9. [DOI] [PubMed] [Google Scholar]
  22. Shen X., Gorovsky M. A. Linker histone H1 regulates specific gene expression but not global transcription in vivo. Cell. 1996 Aug 9;86(3):475–483. doi: 10.1016/s0092-8674(00)80120-8. [DOI] [PubMed] [Google Scholar]
  23. Steinbach O. C., Wolffe A. P., Rupp R. A. Somatic linker histones cause loss of mesodermal competence in Xenopus. Nature. 1997 Sep 25;389(6649):395–399. doi: 10.1038/38755. [DOI] [PubMed] [Google Scholar]
  24. Szekeres M., Haizel T., Adam E., Nagy F. Molecular characterization and expression of a tobacco histone H1 cDNA. Plant Mol Biol. 1995 Feb;27(3):597–605. doi: 10.1007/BF00019325. [DOI] [PubMed] [Google Scholar]
  25. Thangavelu M., Belostotsky D., Bevan M. W., Flavell R. B., Rogers H. J., Lonsdale D. M. Partial characterization of the Nicotiana tabacum actin gene family: evidence for pollen-specific expression of one of the gene family members. Mol Gen Genet. 1993 Aug;240(2):290–295. doi: 10.1007/BF00277069. [DOI] [PubMed] [Google Scholar]
  26. Tomaszewski R., Jerzmanowski A. The AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus laevis act as a strong local signal for histone H1-mediated chromatin reorganization in vitro. Nucleic Acids Res. 1997 Feb 1;25(3):458–466. doi: 10.1093/nar/25.3.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wei T., O'Connell M. A. Structure and characterization of a putative drought-inducible H1 histone gene. Plant Mol Biol. 1996 Jan;30(2):255–268. doi: 10.1007/BF00020112. [DOI] [PubMed] [Google Scholar]
  28. van Holde K., Zlatanova J. What determines the folding of the chromatin fiber? Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10548–10555. doi: 10.1073/pnas.93.20.10548. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES