Abstract
Lesions in brassinosteroid (BR) biosynthetic genes result in characteristic dwarf phenotypes in plants. Understanding the regulation of BR biosynthesis demands continued isolation and characterization of mutants corresponding to the genes involved in BR biosynthesis. Here, we present analysis of a novel BR biosynthetic locus, dwarf7 (dwf7). Feeding studies with BR biosynthetic intermediates and analysis of endogenous levels of BR and sterol biosynthetic intermediates indicate that the defective step in dwf7-1 resides before the production of 24-methylenecholesterol in the sterol biosynthetic pathway. Furthermore, results from feeding studies with 13C-labeled mevalonic acid and compactin show that the defective step is specifically the Delta7 sterol C-5 desaturation, suggesting that dwf7 is an allele of the previously cloned STEROL1 (STE1) gene. Sequencing of the STE1 locus in two dwf7 mutants revealed premature stop codons in the first (dwf7-2) and the third (dwf7-1) exons. Thus, the reduction of BRs in dwf7 is due to a shortage of substrate sterols and is the direct cause of the dwarf phenotype in dwf7.
Full Text
The Full Text of this article is available as a PDF (521.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aarts M. G., Keijzer C. J., Stiekema W. J., Pereira A. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell. 1995 Dec;7(12):2115–2127. doi: 10.1105/tpc.7.12.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arthington B. A., Hoskins J., Skatrud P. L., Bard M. Nucleotide sequence of the gene encoding yeast C-8 sterol isomerase. Gene. 1991 Oct 30;107(1):173–174. doi: 10.1016/0378-1119(91)90314-2. [DOI] [PubMed] [Google Scholar]
- Azpiroz R., Wu Y., LoCascio J. C., Feldmann K. A. An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell. 1998 Feb;10(2):219–230. doi: 10.1105/tpc.10.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bach T. J., Benveniste P. Cloning of cDNAs or genes encoding enzymes of sterol biosynthesis from plants and other eukaryotes: heterologous expression and complementation analysis of mutations for functional characterization. Prog Lipid Res. 1997 Sep;36(2-3):197–226. doi: 10.1016/s0163-7827(97)00009-x. [DOI] [PubMed] [Google Scholar]
- Bak S., Kahn R. A., Olsen C. E., Halkier B. A. Cloning and expression in Escherichia coli of the obtusifoliol 14 alpha-demethylase of Sorghum bicolor (L.) Moench, a cytochrome P450 orthologous to the sterol 14 alpha-demethylases (CYP51) from fungi and mammals. Plant J. 1997 Feb;11(2):191–201. doi: 10.1046/j.1365-313x.1997.11020191.x. [DOI] [PubMed] [Google Scholar]
- Barton G. J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 1993 Jan;6(1):37–40. doi: 10.1093/protein/6.1.37. [DOI] [PubMed] [Google Scholar]
- Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
- Bouvier-Navé P., Husselstein T., Desprez T., Benveniste P. Identification of cDNAs encoding sterol methyl-transferases involved in the second methylation step of plant sterol biosynthesis. Eur J Biochem. 1997 Jun 1;246(2):518–529. doi: 10.1111/j.1432-1033.1997.t01-1-00518.x. [DOI] [PubMed] [Google Scholar]
- Choe S., Dilkes B. P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K. A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell. 1998 Feb;10(2):231–243. doi: 10.1105/tpc.10.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clouse S. D., Langford M., McMorris T. C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 1996 Jul;111(3):671–678. doi: 10.1104/pp.111.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corey E. J., Matsuda S. P., Bartel B. Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11628–11632. doi: 10.1073/pnas.90.24.11628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cosgrove D. J. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell. 1997 Jul;9(7):1031–1041. doi: 10.1105/tpc.9.7.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujioka S., Li J., Choi Y. H., Seto H., Takatsuto S., Noguchi T., Watanabe T., Kuriyama H., Yokota T., Chory J. The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell. 1997 Nov;9(11):1951–1962. doi: 10.1105/tpc.9.11.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujioka S., Sakurai A. Brassinosteroids. Nat Prod Rep. 1997 Feb;14(1):1–10. doi: 10.1039/np9971400001. [DOI] [PubMed] [Google Scholar]
- Gachotte D., Husselstein T., Bard M., Lacroute F., Benveniste P. Isolation and characterization of an Arabidopsis thaliana cDNA encoding a delta 7-sterol-C-5-desaturase by functional complementation of a defective yeast mutant. Plant J. 1996 Mar;9(3):391–398. doi: 10.1046/j.1365-313x.1996.09030391.x. [DOI] [PubMed] [Google Scholar]
- Gachotte D., Meens R., Benveniste P. An Arabidopsis mutant deficient in sterol biosynthesis: heterologous complementation by ERG 3 encoding a delta 7-sterol-C-5-desaturase from yeast. Plant J. 1995 Sep;8(3):407–416. doi: 10.1046/j.1365-313x.1995.08030407.x. [DOI] [PubMed] [Google Scholar]
- Geber A., Hitchcock C. A., Swartz J. E., Pullen F. S., Marsden K. E., Kwon-Chung K. J., Bennett J. E. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother. 1995 Dec;39(12):2708–2717. doi: 10.1128/aac.39.12.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grebenok R. J., Galbraith D. W., Penna D. D. Characterization of Zea mays endosperm C-24 sterol methyltransferase: one of two types of sterol methyltransferase in higher plants. Plant Mol Biol. 1997 Aug;34(6):891–896. doi: 10.1023/a:1005818210641. [DOI] [PubMed] [Google Scholar]
- Husselstein T., Gachotte D., Desprez T., Bard M., Benveniste P. Transformation of Saccharomyces cerevisiae with a cDNA encoding a sterol C-methyltransferase from Arabidopsis thaliana results in the synthesis of 24-ethyl sterols. FEBS Lett. 1996 Feb 26;381(1-2):87–92. doi: 10.1016/0014-5793(96)00089-0. [DOI] [PubMed] [Google Scholar]
- Kim S. K., Abe H., Little C. H., Pharis R. P. Identification of Two Brassinosteroids from the Cambial Region of Scots Pine (Pinus silverstris) by Gas Chromatography-Mass Spectrometry, after Detection Using a Dwarf Rice Lamina Inclination Bioassay. Plant Physiol. 1990 Dec;94(4):1709–1713. doi: 10.1104/pp.94.4.1709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kita T., Brown M. S., Goldstein J. L. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase. J Clin Invest. 1980 Nov;66(5):1094–1100. doi: 10.1172/JCI109938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krysan P. J., Young J. C., Tax F., Sussman M. R. Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8145–8150. doi: 10.1073/pnas.93.15.8145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lecain E., Chenivesse X., Spagnoli R., Pompon D. Cloning by metabolic interference in yeast and enzymatic characterization of Arabidopsis thaliana sterol delta 7-reductase. J Biol Chem. 1996 May 3;271(18):10866–10873. doi: 10.1074/jbc.271.18.10866. [DOI] [PubMed] [Google Scholar]
- Li J., Biswas M. G., Chao A., Russell D. W., Chory J. Conservation of function between mammalian and plant steroid 5alpha-reductases. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3554–3559. doi: 10.1073/pnas.94.8.3554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J., Chory J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell. 1997 Sep 5;90(5):929–938. doi: 10.1016/s0092-8674(00)80357-8. [DOI] [PubMed] [Google Scholar]
- Li J., Nagpal P., Vitart V., McMorris T. C., Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996 Apr 19;272(5260):398–401. doi: 10.1126/science.272.5260.398. [DOI] [PubMed] [Google Scholar]
- Li L., Kaplan J. Characterization of yeast methyl sterol oxidase (ERG25) and identification of a human homologue. J Biol Chem. 1996 Jul 12;271(28):16927–16933. doi: 10.1074/jbc.271.28.16927. [DOI] [PubMed] [Google Scholar]
- Lincoln C., Britton J. H., Estelle M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell. 1990 Nov;2(11):1071–1080. doi: 10.1105/tpc.2.11.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu Y. G., Mitsukawa N., Oosumi T., Whittier R. F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995 Sep;8(3):457–463. doi: 10.1046/j.1365-313x.1995.08030457.x. [DOI] [PubMed] [Google Scholar]
- Matsushima M., Inazawa J., Takahashi E., Suzumori K., Nakamura Y. Molecular cloning and mapping of a human cDNA (SC5DL) encoding a protein homologous to fungal sterol-C5-desaturase. Cytogenet Cell Genet. 1996;74(4):252–254. doi: 10.1159/000134427. [DOI] [PubMed] [Google Scholar]
- Mazars G. R., Moyret C., Jeanteur P., Theillet C. G. Direct sequencing by thermal asymmetric PCR. Nucleic Acids Res. 1991 Sep 11;19(17):4783–4783. doi: 10.1093/nar/19.17.4783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura T., Nakayama M., Reid J. B., Takeuchi Y., Yokota T. Blockage of Brassinosteroid Biosynthesis and Sensitivity Causes Dwarfism in Garden Pea. Plant Physiol. 1997 Jan;113(1):31–37. doi: 10.1104/pp.113.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng J., Harberd N. P. Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants of Arabidopsis. Plant Physiol. 1997 Apr;113(4):1051–1058. doi: 10.1104/pp.113.4.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regan L. The design of metal-binding sites in proteins. Annu Rev Biophys Biomol Struct. 1993;22:257–287. doi: 10.1146/annurev.bb.22.060193.001353. [DOI] [PubMed] [Google Scholar]
- Shanklin J., Whittle E., Fox B. G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry. 1994 Nov 1;33(43):12787–12794. doi: 10.1021/bi00209a009. [DOI] [PubMed] [Google Scholar]
- Shi J., Gonzales R. A., Bhattacharyya M. K. Identification and characterization of an S-adenosyl-L-methionine: delta 24-sterol-C-methyltransferase cDNA from soybean. J Biol Chem. 1996 Apr 19;271(16):9384–9389. doi: 10.1074/jbc.271.16.9384. [DOI] [PubMed] [Google Scholar]
- Smyth D. R., Bowman J. L., Meyerowitz E. M. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. doi: 10.1105/tpc.2.8.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szekeres M., Németh K., Koncz-Kálmán Z., Mathur J., Kauschmann A., Altmann T., Rédei G. P., Nagy F., Schell J., Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996 Apr 19;85(2):171–182. doi: 10.1016/s0092-8674(00)81094-6. [DOI] [PubMed] [Google Scholar]
- Taguchi N., Takano Y., Julmanop C., Wang Y., Stock S., Takemoto J., Miyakawa T. Identification and analysis of the Saccharomyces cerevisiae SYR1 gene reveals that ergosterol is involved in the action of syringomycin. Microbiology. 1994 Feb;140(Pt 2):353–359. doi: 10.1099/13500872-140-2-353. [DOI] [PubMed] [Google Scholar]
- Taton M., Rahier A. Identification of delta 5,7-sterol-delta 7-reductase in higher plant microsomes. Biochem Biophys Res Commun. 1991 Nov 27;181(1):465–473. doi: 10.1016/s0006-291x(05)81442-1. [DOI] [PubMed] [Google Scholar]
- Taton M., Rahier A. Plant sterol biosynthesis: identification and characterization of higher plant delta 7-sterol C5(6)-desaturase. Arch Biochem Biophys. 1996 Jan 15;325(2):279–288. doi: 10.1006/abbi.1996.0035. [DOI] [PubMed] [Google Scholar]
- Timpte C., Wilson A. K., Estelle M. The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics. 1994 Dec;138(4):1239–1249. doi: 10.1093/genetics/138.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uwabe K., Gahara Y., Yamada H., Miyake T., Kitamura T. Identification and characterization of a novel gene (neurorep 1) expressed in nerve cells and up-regulated after axotomy. Neuroscience. 1997 Sep;80(2):501–509. doi: 10.1016/s0306-4522(97)00112-7. [DOI] [PubMed] [Google Scholar]
