Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Mar;11(3):365–376. doi: 10.1105/tpc.11.3.365

IAR3 encodes an auxin conjugate hydrolase from Arabidopsis.

R T Davies 1, D H Goetz 1, J Lasswell 1, M N Anderson 1, B Bartel 1
PMCID: PMC144182  PMID: 10072397

Abstract

Amide-linked conjugates of indole-3-acetic acid (IAA) are putative storage or inactivation forms of the growth hormone auxin. Here, we describe the Arabidopsis iar3 mutant that displays reduced sensitivity to IAA-Ala. IAR3 is a member of a family of Arabidopsis genes related to the previously isolated ILR1 gene, which encodes an IAA-amino acid hydrolase selective for IAA-Leu and IAA-Phe. IAR3 and the very similar ILL5 gene are closely linked on chromosome 1 and comprise a subfamily of the six Arabidopsis IAA-conjugate hydrolases. The purified IAR3 enzyme hydrolyzes IAA-Ala in vitro. iar 3 ilr1 double mutants are more resistant than either single mutant to IAA-amino acid conjugates, and plants overexpressing IAR3 or ILR1 are more sensitive than is the wild type to certain IAA-amino acid conjugates, reflecting the overlapping substrate specificities of the corresponding enzymes. The IAR3 gene is expressed most strongly in roots, stems, and flowers, suggesting roles for IAA-conjugate hydrolysis in those tissues.

Full Text

The Full Text of this article is available as a PDF (362.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartel B., Fink G. R. ILR1, an amidohydrolase that releases active indole-3-acetic acid from conjugates. Science. 1995 Jun 23;268(5218):1745–1748. doi: 10.1126/science.7792599. [DOI] [PubMed] [Google Scholar]
  2. Bartel Bonnie. AUXIN BIOSYNTHESIS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):51–66. doi: 10.1146/annurev.arplant.48.1.51. [DOI] [PubMed] [Google Scholar]
  3. Bednarek S. Y., Raikhel N. V. Intracellular trafficking of secretory proteins. Plant Mol Biol. 1992 Oct;20(1):133–150. doi: 10.1007/BF00029156. [DOI] [PubMed] [Google Scholar]
  4. Bell C. J., Ecker J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics. 1994 Jan 1;19(1):137–144. doi: 10.1006/geno.1994.1023. [DOI] [PubMed] [Google Scholar]
  5. Bent A. F., Kunkel B. N., Dahlbeck D., Brown K. L., Schmidt R., Giraudat J., Leung J., Staskawicz B. J. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science. 1994 Sep 23;265(5180):1856–1860. doi: 10.1126/science.8091210. [DOI] [PubMed] [Google Scholar]
  6. Bialek K., Meudt W. J., Cohen J. D. Indole-3-acetic Acid (IAA) and IAA Conjugates Applied to Bean Stem Sections: IAA Content and the Growth Response. Plant Physiol. 1983 Sep;73(1):130–134. doi: 10.1104/pp.73.1.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown J. W., Smith P., Simpson C. G. Arabidopsis consensus intron sequences. Plant Mol Biol. 1996 Nov;32(3):531–535. doi: 10.1007/BF00019105. [DOI] [PubMed] [Google Scholar]
  8. Campanella J. J., Ludwig-Mueller J., Town C. D. Isolation and characterization of mutants of Arabidopsis thaliana with increased resistance to growth inhibition by indoleacetic acid-amino acid conjugates. Plant Physiol. 1996 Oct;112(2):735–745. doi: 10.1104/pp.112.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Celenza J. L., Jr, Grisafi P. L., Fink G. R. A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev. 1995 Sep 1;9(17):2131–2142. doi: 10.1101/gad.9.17.2131. [DOI] [PubMed] [Google Scholar]
  10. Chou J. C., Kuleck G. A., Cohen J. D., Mulbry W. W. Partial Purification and Characterization of an Inducible Indole-3-Acetyl-L-Aspartic Acid Hydrolase from Enterobacter agglomerans. Plant Physiol. 1996 Nov;112(3):1281–1287. doi: 10.1104/pp.112.3.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Epstein E., Cohen J. D., Bandurski R. S. Concentration and Metabolic Turnover of Indoles in Germinating Kernels of Zea mays L. Plant Physiol. 1980 Mar;65(3):415–421. doi: 10.1104/pp.65.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feung C. S., Hamilton R. H., Mumma R. O. Metabolism of Indole-3-Acetic Acid: III. Identification of Metabolites Isolated from Crown Gall Callus Tissue. Plant Physiol. 1976 Nov;58(5):666–669. doi: 10.1104/pp.58.5.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Feung C. S., Hamilton R. H., Mumma R. O. Metabolism of Indole-3-acetic Acid: IV. Biological Properties of Amino Acid Conjugates. Plant Physiol. 1977 Jan;59(1):91–93. doi: 10.1104/pp.59.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hakes D. J., Dixon J. E. New vectors for high level expression of recombinant proteins in bacteria. Anal Biochem. 1992 May 1;202(2):293–298. doi: 10.1016/0003-2697(92)90108-j. [DOI] [PubMed] [Google Scholar]
  15. Hall P. J., Bandurski R. S. [3H]Indole-3-acetyl-myo-inositol hydrolysis by extracts of Zea mays L. vegetative tissue. Plant Physiol. 1986;80:374–377. doi: 10.1104/pp.80.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hangarter R. P., Good N. E. Evidence That IAA Conjugates Are Slow-Release Sources of Free IAA in Plant Tissues. Plant Physiol. 1981 Dec;68(6):1424–1427. doi: 10.1104/pp.68.6.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hangarter R. P., Peterson M. D., Good N. E. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture. Plant Physiol. 1980 May;65(5):761–767. doi: 10.1104/pp.65.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hani E. K., Chan V. L. Expression and characterization of Campylobacter jejuni benzoylglycine amidohydrolase (Hippuricase) gene in Escherichia coli. J Bacteriol. 1995 May;177(9):2396–2402. doi: 10.1128/jb.177.9.2396-2402.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  20. Kowalczyk S., Bandurski R. S. Isomerization of 1-O-indol-3-ylacetyl-beta-D-glucose. Enzymatic hydrolysis of 1-O, 4-O, and 6-O-indol-3-ylacetyl-beta-D-glucose and the enzymatic synthesis of indole-3-acetyl glycerol by a hormone metabolizing complex. Plant Physiol. 1990;94:4–12. doi: 10.1104/pp.94.1.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Last R. L., Fink G. R. Tryptophan-Requiring Mutants of the Plant Arabidopsis thaliana. Science. 1988 Apr 15;240(4850):305–310. doi: 10.1126/science.240.4850.305. [DOI] [PubMed] [Google Scholar]
  22. Meyer P., Saedler H. HOMOLOGY-DEPENDENT GENE SILENCING IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):23–48. doi: 10.1146/annurev.arplant.47.1.23. [DOI] [PubMed] [Google Scholar]
  23. Minet M., Dufour M. E., Lacroute F. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J. 1992 May;2(3):417–422. doi: 10.1111/j.1365-313x.1992.00417.x. [DOI] [PubMed] [Google Scholar]
  24. Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Newman T., de Bruijn F. J., Green P., Keegstra K., Kende H., McIntosh L., Ohlrogge J., Raikhel N., Somerville S., Thomashow M. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. doi: 10.1104/pp.106.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Normanly J., Grisafi P., Fink G. R., Bartel B. Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell. 1997 Oct;9(10):1781–1790. doi: 10.1105/tpc.9.10.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Normanly J., Slovin J. P., Cohen J. D. Rethinking Auxin Biosynthesis and Metabolism. Plant Physiol. 1995 Feb;107(2):323–329. doi: 10.1104/pp.107.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Olszewski N. E., Martin F. B., Ausubel F. M. Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Nucleic Acids Res. 1988 Nov 25;16(22):10765–10782. doi: 10.1093/nar/16.22.10765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ostin A., Kowalyczk M., Bhalerao R. P., Sandberg G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 1998 Sep;118(1):285–296. doi: 10.1104/pp.118.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rojo E., Titarenko E., León J., Berger S., Vancanneyt G., Sánchez-Serrano J. J. Reversible protein phosphorylation regulates jasmonic acid-dependent and -independent wound signal transduction pathways in Arabidopsis thaliana. Plant J. 1998 Jan;13(2):153–165. doi: 10.1046/j.1365-313x.1998.00020.x. [DOI] [PubMed] [Google Scholar]
  31. Stasinopoulos T. C., Hangarter R. P. Preventing photochemistry in culture media by long-pass light filters alters growth of cultured tissues. Plant Physiol. 1990 Aug;93(4):1365–1369. doi: 10.1104/pp.93.4.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Titarenko E., Rojo E., León J., Sánchez-Serrano J. J. Jasmonic acid-dependent and -independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol. 1997 Oct;115(2):817–826. doi: 10.1104/pp.115.2.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tuominen H., Ostin A., Sandberg G., Sundberg B. A Novel Metabolic Pathway for Indole-3-Acetic Acid in Apical Shoots of Populus tremula (L.) x Populus tremuloides (Michx.). Plant Physiol. 1994 Dec;106(4):1511–1520. doi: 10.1104/pp.106.4.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES