Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Mar;11(3):445–458. doi: 10.1105/tpc.11.3.445

The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation.

C C Sheldon 1, J E Burn 1, P P Perez 1, J Metzger 1, J A Edwards 1, W J Peacock 1, E S Dennis 1
PMCID: PMC144185  PMID: 10072403

Abstract

A MADS box gene, FLF (for FLOWERING LOCUS F ), isolated from a late-flowering, T-DNA-tagged Arabidopsis mutant, is a semidominant gene encoding a repressor of flowering. The FLF gene appears to integrate the vernalization-dependent and autonomous flowering pathways because its expression is regulated by genes in both pathways. The level of FLF mRNA is downregulated by vernalization and by a decrease in genomic DNA methylation, which is consistent with our previous suggestion that vernalization acts to induce flowering through changes in gene activity that are mediated through a reduction in DNA methylation. The flf-1 mutant requires a greater than normal amount of an exogenous gibberellin (GA3) to decrease flowering time compared with the wild type or with vernalization-responsive late-flowering mutants, suggesting that the FLF gene product may block the promotion of flowering by GAs. FLF maps to a region on chromosome 5 near the FLOWERING LOCUS C gene, which is a semidominant repressor of flowering in late-flowering ecotypes of Arabidopsis.

Full Text

The Full Text of this article is available as a PDF (808.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alonso-Blanco C., El-Assal S. E., Coupland G., Koornneef M. Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana. Genetics. 1998 Jun;149(2):749–764. doi: 10.1093/genetics/149.2.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burn J. E., Bagnall D. J., Metzger J. D., Dennis E. S., Peacock W. J. DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):287–291. doi: 10.1073/pnas.90.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chandler J., Wilson A., Dean C. Arabidopsis mutants showing an altered response to vernalization. Plant J. 1996 Oct;10(4):637–644. doi: 10.1046/j.1365-313x.1996.10040637.x. [DOI] [PubMed] [Google Scholar]
  4. Chang C., Bowman J. L., DeJohn A. W., Lander E. S., Meyerowitz E. M. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6856–6860. doi: 10.1073/pnas.85.18.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chou M. L., Yang C. H. FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development. Plant J. 1998 Jul;15(2):231–242. doi: 10.1046/j.1365-313x.1998.00204.x. [DOI] [PubMed] [Google Scholar]
  6. Clarke J. H., Dean C. Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol Gen Genet. 1994 Jan;242(1):81–89. doi: 10.1007/BF00277351. [DOI] [PubMed] [Google Scholar]
  7. Davies B., Schwarz-Sommer Z. Control of floral organ identity by homeotic MADS-box transcription factors. Results Probl Cell Differ. 1994;20:235–258. doi: 10.1007/978-3-540-48037-2_11. [DOI] [PubMed] [Google Scholar]
  8. Dennis E. S., Bilodeau P., Burn J., Finnegan E. J., Genger R., Helliwell C., Kang B. J., Sheldon C. C., Peacock W. J. Methylation controls the low temperature induction of flowering in Arabidopsis. Symp Soc Exp Biol. 1998;51:97–103. [PubMed] [Google Scholar]
  9. Dolferus R., Jacobs M., Peacock W. J., Dennis E. S. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol. 1994 Aug;105(4):1075–1087. doi: 10.1104/pp.105.4.1075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Finnegan E. J., Genger R. K., Kovac K., Peacock W. J., Dennis E. S. DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5824–5829. doi: 10.1073/pnas.95.10.5824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finnegan E. J., Lawrence G. J., Dennis E. S., Ellis J. G. Behaviour of modified Ac elements in flax callus and regenerated plants. Plant Mol Biol. 1993 Jul;22(4):625–633. doi: 10.1007/BF00047403. [DOI] [PubMed] [Google Scholar]
  13. Finnegan E. J., Peacock W. J., Dennis E. S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8449–8454. doi: 10.1073/pnas.93.16.8449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gleave A. P. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol. 1992 Dec;20(6):1203–1207. doi: 10.1007/BF00028910. [DOI] [PubMed] [Google Scholar]
  15. Kempin S. A., Savidge B., Yanofsky M. F. Molecular basis of the cauliflower phenotype in Arabidopsis. Science. 1995 Jan 27;267(5197):522–525. doi: 10.1126/science.7824951. [DOI] [PubMed] [Google Scholar]
  16. Koornneef M., Hanhart C. J., van der Veen J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet. 1991 Sep;229(1):57–66. doi: 10.1007/BF00264213. [DOI] [PubMed] [Google Scholar]
  17. Koornneef Maarten, Alonso-Blanco Carlos, Peeters Anton J. M., Soppe Wim. GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):345–370. doi: 10.1146/annurev.arplant.49.1.345. [DOI] [PubMed] [Google Scholar]
  18. Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E., Newberg L. A., Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1987 Oct;1(2):174–181. doi: 10.1016/0888-7543(87)90010-3. [DOI] [PubMed] [Google Scholar]
  19. Lawrence G., Finnegan J., Ellis J. Instability of the L6 gene for rust resistance in flax is correlated with the presence of a linked Ac element. Plant J. 1993 Oct;4(4):659–669. doi: 10.1046/j.1365-313x.1993.04040659.x. [DOI] [PubMed] [Google Scholar]
  20. Lee I., Amasino R. M. Effect of Vernalization, Photoperiod, and Light Quality on the Flowering Phenotype of Arabidopsis Plants Containing the FRIGIDA Gene. Plant Physiol. 1995 May;108(1):157–162. doi: 10.1104/pp.108.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lee I., Aukerman M. J., Gore S. L., Lohman K. N., Michaels S. D., Weaver L. M., John M. C., Feldmann K. A., Amasino R. M. Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell. 1994 Jan;6(1):75–83. doi: 10.1105/tpc.6.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lee I., Bleecker A., Amasino R. Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol Gen Genet. 1993 Feb;237(1-2):171–176. doi: 10.1007/BF00282798. [DOI] [PubMed] [Google Scholar]
  23. Levy YY, Dean C. The transition to flowering . Plant Cell. 1998 Dec;10(12):1973–1990. doi: 10.1105/tpc.10.12.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Logemann J., Schell J., Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987 May 15;163(1):16–20. doi: 10.1016/0003-2697(87)90086-8. [DOI] [PubMed] [Google Scholar]
  25. Macknight R., Bancroft I., Page T., Lister C., Schmidt R., Love K., Westphal L., Murphy G., Sherson S., Cobbett C. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell. 1997 May 30;89(5):737–745. doi: 10.1016/s0092-8674(00)80256-1. [DOI] [PubMed] [Google Scholar]
  26. Mandel M. A., Gustafson-Brown C., Savidge B., Yanofsky M. F. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature. 1992 Nov 19;360(6401):273–277. doi: 10.1038/360273a0. [DOI] [PubMed] [Google Scholar]
  27. Martinez-Zapater J. M., Somerville C. R. Effect of Light Quality and Vernalization on Late-Flowering Mutants of Arabidopsis thaliana. Plant Physiol. 1990 Mar;92(3):770–776. doi: 10.1104/pp.92.3.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McNellis T. W., Mudgett M. B., Li K., Aoyama T., Horvath D., Chua N. H., Staskawicz B. J. Glucocorticoid-inducible expression of a bacterial avirulence gene in transgenic Arabidopsis induces hypersensitive cell death. Plant J. 1998 Apr;14(2):247–257. doi: 10.1046/j.1365-313x.1998.00106.x. [DOI] [PubMed] [Google Scholar]
  29. Newman T., de Bruijn F. J., Green P., Keegstra K., Kende H., McIntosh L., Ohlrogge J., Raikhel N., Somerville S., Thomashow M. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. doi: 10.1104/pp.106.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rounsley S. D., Ditta G. S., Yanofsky M. F. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell. 1995 Aug;7(8):1259–1269. doi: 10.1105/tpc.7.8.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  32. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weigel D., Alvarez J., Smyth D. R., Yanofsky M. F., Meyerowitz E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992 May 29;69(5):843–859. doi: 10.1016/0092-8674(92)90295-n. [DOI] [PubMed] [Google Scholar]
  34. Zhang H., Forde B. G. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science. 1998 Jan 16;279(5349):407–409. doi: 10.1126/science.279.5349.407. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES