Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Mar;11(3):485–494. doi: 10.1105/tpc.11.3.485

Divinyl ether fatty acid synthesis in late blight-diseased potato leaves.

H Weber 1, A Chételat 1, D Caldelari 1, E E Farmer 1
PMCID: PMC144186  PMID: 10072406

Abstract

We conducted a study of the patterns and dynamics of oxidized fatty acid derivatives (oxylipins) in potato leaves infected with the late-blight pathogen Phytophthora infestans. Two 18-carbon divinyl ether fatty acids, colneleic acid and colnelenic acid, accumulated during disease development. To date, there are no reports that such compounds have been detected in higher plants. The divinyl ether fatty acids accumulate more rapidly in potato cultivar Matilda (a cultivar with increased resistance to late blight) than in cultivar Bintje, a susceptible cultivar. Colnelenic acid reached levels of up to approximately 24 nmol (7 microgram) per g fresh weight of tissue in infected leaves. By contrast, levels of members of the jasmonic acid family did not change significantly during pathogenesis. The divinyl ethers also accumulated during the incompatible interaction of tobacco with tobacco mosaic virus. Colneleic and colnelenic acids were found to be inhibitory to P. infestans, suggesting a function in plant defense for divinyl ethers, which are unstable compounds rarely encountered in biological systems.

Full Text

The Full Text of this article is available as a PDF (99.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell E., Creelman R. A., Mullet J. E. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8675–8679. doi: 10.1073/pnas.92.19.8675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Creelman Robert A., Mullet John E. BIOSYNTHESIS AND ACTION OF JASMONATES IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):355–381. doi: 10.1146/annurev.arplant.48.1.355. [DOI] [PubMed] [Google Scholar]
  3. Farmer E. E. Fatty acid signalling in plants and their associated microorganisms. Plant Mol Biol. 1994 Dec;26(5):1423–1437. doi: 10.1007/BF00016483. [DOI] [PubMed] [Google Scholar]
  4. Farmer E. E., Weber H., Vollenweider S. Fatty acid signaling in Arabidopsis. Planta. 1998 Oct;206(2):167–174. doi: 10.1007/s004250050388. [DOI] [PubMed] [Google Scholar]
  5. Galliard T., Phillips D. R. The enzymic conversion of linoleic acid into 9-(nona-1',3'-dienoxy)non-8-enoic acid, a novel unsaturated ether derivative isolated from homogenates of Solanum tuberosum tubers. Biochem J. 1972 Sep;129(3):743–753. doi: 10.1042/bj1290743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Galliard T., Wardale D. A., Mathew J. A. The enzymic and non-enzymic degradation of colneleic acid, an unsaturated fatty acid ether intermediate in the lipoxygenase pathway of linoleic acid oxidation in potato (Solanum tuberosum) tubers. Biochem J. 1974 Jan;138(1):23–31. doi: 10.1042/bj1380023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gardner H. W. Recent investigations into the lipoxygenase pathway of plants. Biochim Biophys Acta. 1991 Jul 30;1084(3):221–239. doi: 10.1016/0005-2760(91)90063-n. [DOI] [PubMed] [Google Scholar]
  8. Gerwick W. H. Epoxy allylic carbocations as conceptual intermediates in the biogenesis of diverse marine oxylipins. Lipids. 1996 Dec;31(12):1215–1231. doi: 10.1007/BF02587906. [DOI] [PubMed] [Google Scholar]
  9. Grechkin A. N., Hamberg M. Divinyl ether synthase from garlic (Allium sativum L.) bulbs: sub-cellular localization and substrate regio-and stereospecificity. FEBS Lett. 1996 Jun 17;388(2-3):112–114. doi: 10.1016/0014-5793(96)00536-4. [DOI] [PubMed] [Google Scholar]
  10. Grechkin A. N., Ilyasov A. V., Hamberg M. On the mechanism of biosynthesis of divinyl ether oxylipins by enzyme from garlic bulbs. Eur J Biochem. 1997 Apr 1;245(1):137–142. doi: 10.1111/j.1432-1033.1997.00137.x. [DOI] [PubMed] [Google Scholar]
  11. Hamberg M., Gardner H. W. Oxylipin pathway to jasmonates: biochemistry and biological significance. Biochim Biophys Acta. 1992 Nov 11;1165(1):1–18. doi: 10.1016/0005-2760(92)90069-8. [DOI] [PubMed] [Google Scholar]
  12. Judelson H. S. The genetics and biology of Phytophthora infestans: modern approaches to a historical challenge. Fungal Genet Biol. 1997 Oct;22(2):65–76. doi: 10.1006/fgbi.1997.1006. [DOI] [PubMed] [Google Scholar]
  13. Penninckx I. A., Eggermont K., Terras F. R., Thomma B. P., De Samblanx G. W., Buchala A., Métraux J. P., Manners J. M., Broekaert W. F. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell. 1996 Dec;8(12):2309–2323. doi: 10.1105/tpc.8.12.2309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rancé I., Fournier J., Esquerré-Tugayé M. T. The incompatible interaction between Phytophthora parasitica var. nicotianae race 0 and tobacco is suppressed in transgenic plants expressing antisense lipoxygenase sequences. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6554–6559. doi: 10.1073/pnas.95.11.6554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reymond P., Farmer E. E. Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol. 1998 Oct;1(5):404–411. doi: 10.1016/s1369-5266(98)80264-1. [DOI] [PubMed] [Google Scholar]
  16. Royo J., Vancanneyt G., Pérez A. G., Sanz C., Störmann K., Rosahl S., Sánchez-Serrano J. J. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J Biol Chem. 1996 Aug 30;271(35):21012–21019. doi: 10.1074/jbc.271.35.21012. [DOI] [PubMed] [Google Scholar]
  17. Vijayan P., Shockey J., Lévesque C. A., Cook R. J., Browse J. A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7209–7214. doi: 10.1073/pnas.95.12.7209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Weber H., Schultze S., Pfitzner A. J. Two amino acid substitutions in the tomato mosaic virus 30-kilodalton movement protein confer the ability to overcome the Tm-2(2) resistance gene in the tomato. J Virol. 1993 Nov;67(11):6432–6438. doi: 10.1128/jvi.67.11.6432-6438.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weber H., Vick B. A., Farmer E. E. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10473–10478. doi: 10.1073/pnas.94.19.10473. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES