Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Mar;11(3):377–392. doi: 10.1105/tpc.11.3.377

LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen.

R Schwacke 1, S Grallath 1, K E Breitkreuz 1, E Stransky 1, H Stransky 1, W B Frommer 1, D Rentsch 1
PMCID: PMC144187  PMID: 10072398

Abstract

During maturation, pollen undergoes a period of dehydration accompanied by the accumulation of compatible solutes. Solute import across the pollen plasma membrane, which occurs via proteinaceous transporters, is required to support pollen development and also for subsequent germination and pollen tube growth. Analysis of the free amino acid composition of various tissues in tomato revealed that the proline content in flowers was 60 times higher than in any other organ analyzed. Within the floral organs, proline was confined predominantly to pollen, where it represented >70% of total free amino acids. Uptake experiments demonstrated that mature as well as germinated pollen rapidly take up proline. To identify proline transporters in tomato pollen, we isolated genes homologous to Arabidopsis proline transporters. LeProT1 was specifically expressed both in mature and germinating pollen, as demonstrated by RNA in situ hybridization. Expression in a yeast mutant demonstrated that LeProT1 transports proline and gamma-amino butyric acid with low affinity and glycine betaine with high affinity. Direct uptake and competition studies demonstrate that LeProT1 constitutes a general transporter for compatible solutes.

Full Text

The Full Text of this article is available as a PDF (668.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad I., Hellebust J. A. The Relationship between Inorganic Nitrogen Metabolism and Proline Accumulation in Osmoregulatory Responses of Two Euryhaline Microalgae. Plant Physiol. 1988 Oct;88(2):348–354. doi: 10.1104/pp.88.2.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aitken A. 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends Cell Biol. 1996 Sep;6(9):341–347. doi: 10.1016/0962-8924(96)10029-5. [DOI] [PubMed] [Google Scholar]
  3. Bachmann M., Huber J. L., Athwal G. S., Wu K., Ferl R. J., Huber S. C. 14-3-3 proteins associate with the regulatory phosphorylation site of spinach leaf nitrate reductase in an isoform-specific manner and reduce dephosphorylation of Ser-543 by endogenous protein phosphatases. FEBS Lett. 1996 Nov 25;398(1):26–30. doi: 10.1016/s0014-5793(96)01188-x. [DOI] [PubMed] [Google Scholar]
  4. Bischoff M., Rösler J., Raesecke H. R., Görlach J., Amrhein N., Schmid J. Cloning of a cDNA encoding a 3-dehydroquinate synthase from a higher plant, and analysis of the organ-specific and elicitor-induced expression of the corresponding gene. Plant Mol Biol. 1996 Apr;31(1):69–76. doi: 10.1007/BF00020607. [DOI] [PubMed] [Google Scholar]
  5. Boorer K. J., Fischer W. N. Specificity and stoichiometry of the Arabidopsis H+/amino acid transporter AAP5. J Biol Chem. 1997 May 16;272(20):13040–13046. doi: 10.1074/jbc.272.20.13040. [DOI] [PubMed] [Google Scholar]
  6. Chang H. C., Bush D. R. Topology of NAT2, a prototypical example of a new family of amino acid transporters. J Biol Chem. 1997 Nov 28;272(48):30552–30557. doi: 10.1074/jbc.272.48.30552. [DOI] [PubMed] [Google Scholar]
  7. Chen L., Bush D. R. LHT1, a lysine- and histidine-specific amino acid transporter in arabidopsis. Plant Physiol. 1997 Nov;115(3):1127–1134. doi: 10.1104/pp.115.3.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Christensen H. N., Greene A. A., Kakuda D. K., MacLeod C. L. Special transport and neurological significance of two amino acids in a configuration conventionally designated as D. J Exp Biol. 1994 Nov;196:297–305. doi: 10.1242/jeb.196.1.297. [DOI] [PubMed] [Google Scholar]
  9. Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. doi: 10.1128/mr.53.1.121-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dohmen R. J., Strasser A. W., Höner C. B., Hollenberg C. P. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast. 1991 Oct;7(7):691–692. doi: 10.1002/yea.320070704. [DOI] [PubMed] [Google Scholar]
  11. Fischer W. N., Kwart M., Hummel S., Frommer W. B. Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem. 1995 Jul 7;270(27):16315–16320. doi: 10.1074/jbc.270.27.16315. [DOI] [PubMed] [Google Scholar]
  12. Fujita T., Maggio A., Garcia-Rios M., Bressan R. A., Csonka L. N. Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Delta1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol. 1998 Oct;118(2):661–674. doi: 10.1104/pp.118.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Girousse C., Bournoville R., Bonnemain J. L. Water Deficit-Induced Changes in Concentrations in Proline and Some Other Amino Acids in the Phloem Sap of Alfalfa. Plant Physiol. 1996 May;111(1):109–113. doi: 10.1104/pp.111.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Görlach J., Schmid J., Amrhein N. Abundance of transcripts specific for genes encoding enzymes of the prechorismate pathway in different organs of tomato (Lycopersicon esculentum L.) plants. Planta. 1994;193(2):216–223. doi: 10.1007/BF00192533. [DOI] [PubMed] [Google Scholar]
  15. Hanson A. D., Rathinasabapathi B., Rivoal J., Burnet M., Dillon M. O., Gage D. A. Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):306–310. doi: 10.1073/pnas.91.1.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hayashi H., Alia, Mustardy L., Deshnium P., Ida M., Murata N. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J. 1997 Jul;12(1):133–142. doi: 10.1046/j.1365-313x.1997.12010133.x. [DOI] [PubMed] [Google Scholar]
  17. Jauniaux J. C., Grenson M. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem. 1990 May 31;190(1):39–44. doi: 10.1111/j.1432-1033.1990.tb15542.x. [DOI] [PubMed] [Google Scholar]
  18. Jauniaux J. C., Vandenbol M., Vissers S., Broman K., Grenson M. Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains. Eur J Biochem. 1987 May 4;164(3):601–606. doi: 10.1111/j.1432-1033.1987.tb11169.x. [DOI] [PubMed] [Google Scholar]
  19. Kishor PBK., Hong Z., Miao G. H., Hu CAA., Verma DPS. Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol. 1995 Aug;108(4):1387–1394. doi: 10.1104/pp.108.4.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kwart M., Hirner B., Hummel S., Frommer W. B. Differential expression of two related amino acid transporters with differing substrate specificity in Arabidopsis thaliana. Plant J. 1993 Dec;4(6):993–1002. doi: 10.1046/j.1365-313x.1993.04060993.x. [DOI] [PubMed] [Google Scholar]
  21. Labarca C., Loewus F. The Nutritional Role of Pistil Exudate in Pollen Tube Wall Formation in Lilium longiflorum: II. Production and Utilization of Exudate from Stigma and Stylar Canal. Plant Physiol. 1973 Aug;52(2):87–92. doi: 10.1104/pp.52.2.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lalanne E., Mathieu C., Roche O., Vedel F., De Pape R. Structure and specific expression of a Nicotiana sylvestris putative amino-acid transporter gene in mature and in vitro germinating pollen. Plant Mol Biol. 1997 Dec;35(6):855–864. doi: 10.1023/a:1005812419151. [DOI] [PubMed] [Google Scholar]
  23. Larsen P. I., Sydnes L. K., Landfald B., Strøm A. R. Osmoregulation in Escherichia coli by accumulation of organic osmolytes: betaines, glutamic acid, and trehalose. Arch Microbiol. 1987 Feb;147(1):1–7. doi: 10.1007/BF00492896. [DOI] [PubMed] [Google Scholar]
  24. Martin B. A., Tolbert N. E. Factors which affect the amount of inorganic phosphate, phosphorylcholine, and phosphorylethanolamine in xylem exudate of tomato plants. Plant Physiol. 1983 Oct;73(2):464–470. doi: 10.1104/pp.73.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mascarenhas J. P. Molecular Mechanisms of Pollen Tube Growth and Differentiation. Plant Cell. 1993 Oct;5(10):1303–1314. doi: 10.1105/tpc.5.10.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McIntire S. L., Reimer R. J., Schuske K., Edwards R. H., Jorgensen E. M. Identification and characterization of the vesicular GABA transporter. Nature. 1997 Oct 23;389(6653):870–876. doi: 10.1038/39908. [DOI] [PubMed] [Google Scholar]
  27. Milpetz F., Argos P., Persson B. TMAP: a new email and WWW service for membrane-protein structural predictions. Trends Biochem Sci. 1995 May;20(5):204–205. doi: 10.1016/s0968-0004(00)89009-x. [DOI] [PubMed] [Google Scholar]
  28. Moorhead G., Douglas P., Morrice N., Scarabel M., Aitken A., MacKintosh C. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Curr Biol. 1996 Sep 1;6(9):1104–1113. doi: 10.1016/s0960-9822(02)70677-5. [DOI] [PubMed] [Google Scholar]
  29. Munck B. G., Munck L. K., Rasmussen S. N., Polache A. Specificity of the imino acid carrier in rat small intestine. Am J Physiol. 1994 Apr;266(4 Pt 2):R1154–R1161. doi: 10.1152/ajpregu.1994.266.4.R1154. [DOI] [PubMed] [Google Scholar]
  30. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Oecking C., Eckerskorn C., Weiler E. W. The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins. FEBS Lett. 1994 Sep 26;352(2):163–166. doi: 10.1016/0014-5793(94)00949-x. [DOI] [PubMed] [Google Scholar]
  32. Phillips D. A., Joseph C. M., Maxwell C. A. Trigonelline and Stachydrine Released from Alfalfa Seeds Activate NodD2 Protein in Rhizobium meliloti. Plant Physiol. 1992 Aug;99(4):1526–1531. doi: 10.1104/pp.99.4.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rentsch D., Boorer K. J., Frommer W. B. Structure and function of plasma membrane amino acid, oligopeptide and sucrose transporters from higher plants. J Membr Biol. 1998 Apr 1;162(3):177–190. doi: 10.1007/s002329900355. [DOI] [PubMed] [Google Scholar]
  34. Rentsch D., Hirner B., Schmelzer E., Frommer W. B. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant. Plant Cell. 1996 Aug;8(8):1437–1446. doi: 10.1105/tpc.8.8.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rentsch D., Laloi M., Rouhara I., Schmelzer E., Delrot S., Frommer W. B. NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett. 1995 Aug 21;370(3):264–268. doi: 10.1016/0014-5793(95)00853-2. [DOI] [PubMed] [Google Scholar]
  36. Ruffert S., Lambert C., Peter H., Wendisch V. F., Krämer R. Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. Eur J Biochem. 1997 Jul 15;247(2):572–580. doi: 10.1111/j.1432-1033.1997.00572.x. [DOI] [PubMed] [Google Scholar]
  37. Schmid J., Schaller A., Leibinger U., Boll W., Amrhein N. The in-vitro synthesized tomato shikimate kinase precursor is enzymatically active and is imported and processed to the mature enzyme by chloroplasts. Plant J. 1992 May;2(3):375–383. [PubMed] [Google Scholar]
  38. Serrano R. Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol. 1996;165:1–52. doi: 10.1016/s0074-7696(08)62219-6. [DOI] [PubMed] [Google Scholar]
  39. Tarczynski M. C., Jensen R. G., Bohnert H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science. 1993 Jan 22;259(5094):508–510. doi: 10.1126/science.259.5094.508. [DOI] [PubMed] [Google Scholar]
  40. Villalba J. M., Palmgren M. G., Berberián G. E., Ferguson C., Serrano R. Functional expression of plant plasma membrane H(+)-ATPase in yeast endoplasmic reticulum. J Biol Chem. 1992 Jun 15;267(17):12341–12349. [PubMed] [Google Scholar]
  41. Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., Gamblin S. J., Smerdon S. J., Cantley L. C. The structural basis for 14-3-3:phosphopeptide binding specificity. Cell. 1997 Dec 26;91(7):961–971. doi: 10.1016/s0092-8674(00)80487-0. [DOI] [PubMed] [Google Scholar]
  42. Yamauchi A., Uchida S., Kwon H. M., Preston A. S., Robey R. B., Garcia-Perez A., Burg M. B., Handler J. S. Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem. 1992 Jan 5;267(1):649–652. [PubMed] [Google Scholar]
  43. Yu L. X., Nasrallah J., Valenta R., Parthasarathy M. V. Molecular cloning and mRNA localization of tomato pollen profilin. Plant Mol Biol. 1998 Mar;36(5):699–707. doi: 10.1023/a:1005971327353. [DOI] [PubMed] [Google Scholar]
  44. van Heusden G. P., Griffiths D. J., Ford J. C., Chin-A-Woeng T. F., Schrader P. A., Carr A. M., Steensma H. Y. The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur J Biochem. 1995 Apr 1;229(1):45–53. [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES