Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Apr;11(4):523–534. doi: 10.1105/tpc.11.4.523

Nuclear organization and chromosome segregation.

A E Franklin 1, W Z Cande 1
PMCID: PMC144204  PMID: 10213775

Full Text

The Full Text of this article is available as a PDF (220.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abranches R., Beven A. F., Aragón-Alcaide L., Shaw P. J. Transcription sites are not correlated with chromosome territories in wheat nuclei. J Cell Biol. 1998 Oct 5;143(1):5–12. doi: 10.1083/jcb.143.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ananiev E. V., Phillips R. L., Rines H. W. Complex structure of knob DNA on maize chromosome 9. Retrotransposon invasion into heterochromatin. Genetics. 1998 Aug;149(4):2025–2037. doi: 10.1093/genetics/149.4.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson L. K., Offenberg H. H., Verkuijlen W. M., Heyting C. RecA-like proteins are components of early meiotic nodules in lily. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6868–6873. doi: 10.1073/pnas.94.13.6868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aragón-Alcaide L., Reader S., Beven A., Shaw P., Miller T., Moore G. Association of homologous chromosomes during floral development. Curr Biol. 1997 Nov 1;7(11):905–908. doi: 10.1016/s0960-9822(06)00383-6. [DOI] [PubMed] [Google Scholar]
  5. Ashley T. Specific end-to-end attachment of chromosomes in Ornithogalum virens. J Cell Sci. 1979 Aug;38:357–367. doi: 10.1242/jcs.38.1.357. [DOI] [PubMed] [Google Scholar]
  6. Avramova Z., SanMiguel P., Georgieva E., Bennetzen J. L. Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. Plant Cell. 1995 Oct;7(10):1667–1680. doi: 10.1105/tpc.7.10.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bass H. W., Marshall W. F., Sedat J. W., Agard D. A., Cande W. Z. Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol. 1997 Apr 7;137(1):5–18. doi: 10.1083/jcb.137.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Baumann P., Benson F. E., West S. C. Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell. 1996 Nov 15;87(4):757–766. doi: 10.1016/s0092-8674(00)81394-x. [DOI] [PubMed] [Google Scholar]
  9. Bishop D. K., Park D., Xu L., Kleckner N. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell. 1992 May 1;69(3):439–456. doi: 10.1016/0092-8674(92)90446-j. [DOI] [PubMed] [Google Scholar]
  10. Bowser J., Reddy A. S. Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J. 1997 Dec;12(6):1429–1437. doi: 10.1046/j.1365-313x.1997.12061429.x. [DOI] [PubMed] [Google Scholar]
  11. Brehm A., Miska E. A., McCance D. J., Reid J. L., Bannister A. J., Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998 Feb 5;391(6667):597–601. doi: 10.1038/35404. [DOI] [PubMed] [Google Scholar]
  12. Burnham C. R., Stout J. T., Weinheimer W. H., Kowles R. V., Phillips R. L. Chromosome pairing in maize. Genetics. 1972 May;71(1):111–126. doi: 10.1093/genetics/71.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Candau R., Zhou J. X., Allis C. D., Berger S. L. Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J. 1997 Feb 3;16(3):555–565. doi: 10.1093/emboj/16.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Carpenter A. T. Gene conversion, recombination nodules, and the initiation of meiotic synapsis. Bioessays. 1987 May;6(5):232–236. doi: 10.1002/bies.950060510. [DOI] [PubMed] [Google Scholar]
  15. Chan A., Cande W. Z. Maize meiotic spindles assemble around chromatin and do not require paired chromosomes. J Cell Sci. 1998 Dec;111(Pt 23):3507–3515. doi: 10.1242/jcs.111.23.3507. [DOI] [PubMed] [Google Scholar]
  16. Dawe R. K., Sedat J. W., Agard D. A., Cande W. Z. Meiotic chromosome pairing in maize is associated with a novel chromatin organization. Cell. 1994 Mar 11;76(5):901–912. doi: 10.1016/0092-8674(94)90364-6. [DOI] [PubMed] [Google Scholar]
  17. Dawe R. Kelly. MEIOTIC CHROMOSOME ORGANIZATION AND SEGREGATION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49(NaN):371–395. doi: 10.1146/annurev.arplant.49.1.371. [DOI] [PubMed] [Google Scholar]
  18. Dernburg A. F., McDonald K., Moulder G., Barstead R., Dresser M., Villeneuve A. M. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell. 1998 Aug 7;94(3):387–398. doi: 10.1016/s0092-8674(00)81481-6. [DOI] [PubMed] [Google Scholar]
  19. Dong F., Jiang J. Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res. 1998 Nov;6(7):551–558. doi: 10.1023/a:1009280425125. [DOI] [PubMed] [Google Scholar]
  20. Doutriaux M. P., Couteau F., Bergounioux C., White C. Isolation and characterisation of the RAD51 and DMC1 homologs from Arabidopsis thaliana. Mol Gen Genet. 1998 Feb;257(3):283–291. doi: 10.1007/s004380050649. [DOI] [PubMed] [Google Scholar]
  21. Fowler J. E., Quatrano R. S. Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall. Annu Rev Cell Dev Biol. 1997;13:697–743. doi: 10.1146/annurev.cellbio.13.1.697. [DOI] [PubMed] [Google Scholar]
  22. Gant T. M., Wilson K. L. Nuclear assembly. Annu Rev Cell Dev Biol. 1997;13:669–695. doi: 10.1146/annurev.cellbio.13.1.669. [DOI] [PubMed] [Google Scholar]
  23. Gregory P. D., Hörz W. Life with nucleosomes: chromatin remodelling in gene regulation. Curr Opin Cell Biol. 1998 Jun;10(3):339–345. doi: 10.1016/s0955-0674(98)80009-4. [DOI] [PubMed] [Google Scholar]
  24. Heald R., Tournebize R., Blank T., Sandaltzopoulos R., Becker P., Hyman A., Karsenti E. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature. 1996 Aug 1;382(6590):420–425. doi: 10.1038/382420a0. [DOI] [PubMed] [Google Scholar]
  25. Heese-Peck A., Raikhel N. V. The nuclear pore complex. Plant Mol Biol. 1998 Sep;38(1-2):145–162. [PubMed] [Google Scholar]
  26. Hendzel M. J., Wei Y., Mancini M. A., Van Hooser A., Ranalli T., Brinkley B. R., Bazett-Jones D. P., Allis C. D. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997 Nov;106(6):348–360. doi: 10.1007/s004120050256. [DOI] [PubMed] [Google Scholar]
  27. Hirano T. SMC protein complexes and higher-order chromosome dynamics. Curr Opin Cell Biol. 1998 Jun;10(3):317–322. doi: 10.1016/s0955-0674(98)80006-9. [DOI] [PubMed] [Google Scholar]
  28. Horowitz R. A., Agard D. A., Sedat J. W., Woodcock C. L. The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol. 1994 Apr;125(1):1–10. doi: 10.1083/jcb.125.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hush J. M., Wadsworth P., Callaham D. A., Hepler P. K. Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J Cell Sci. 1994 Apr;107(Pt 4):775–784. doi: 10.1242/jcs.107.4.775. [DOI] [PubMed] [Google Scholar]
  30. Iwano M., Fukui K., Takaichi S., Isogai A. Globular and fibrous structure in barley chromosomes revealed by high-resolution scanning electron microscopy. Chromosome Res. 1997 Aug;5(5):341–349. doi: 10.1023/B:CHRO.0000038766.53836.c3. [DOI] [PubMed] [Google Scholar]
  31. Joshi H. C., Palevitz B. A. gamma-Tubulin and microtubule organization in plants. Trends Cell Biol. 1996 Feb;6(2):41–44. doi: 10.1016/0962-8924(96)81008-7. [DOI] [PubMed] [Google Scholar]
  32. Kaszás E., Birchler J. A. Meiotic transmission rates correlate with physical features of rearranged centromeres in maize. Genetics. 1998 Dec;150(4):1683–1692. doi: 10.1093/genetics/150.4.1683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Keeney S., Giroux C. N., Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997 Feb 7;88(3):375–384. doi: 10.1016/s0092-8674(00)81876-0. [DOI] [PubMed] [Google Scholar]
  34. Khodjakov A., Cole R. W., Bajer A. S., Rieder C. L. The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase. J Cell Biol. 1996 Mar;132(6):1093–1104. doi: 10.1083/jcb.132.6.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Koshland D., Strunnikov A. Mitotic chromosome condensation. Annu Rev Cell Dev Biol. 1996;12:305–333. doi: 10.1146/annurev.cellbio.12.1.305. [DOI] [PubMed] [Google Scholar]
  36. Lamond A. I., Earnshaw W. C. Structure and function in the nucleus. Science. 1998 Apr 24;280(5363):547–553. doi: 10.1126/science.280.5363.547. [DOI] [PubMed] [Google Scholar]
  37. Lichter P., Cremer T., Borden J., Manuelidis L., Ward D. C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet. 1988 Nov;80(3):224–234. doi: 10.1007/BF01790090. [DOI] [PubMed] [Google Scholar]
  38. Loidl J., Nairz K., Klein F. Meiotic chromosome synapsis in a haploid yeast. Chromosoma. 1991 May;100(4):221–228. doi: 10.1007/BF00344155. [DOI] [PubMed] [Google Scholar]
  39. Lombillo V. A., Stewart R. J., McIntosh J. R. Minus-end-directed motion of kinesin-coated microspheres driven by microtubule depolymerization. Nature. 1995 Jan 12;373(6510):161–164. doi: 10.1038/373161a0. [DOI] [PubMed] [Google Scholar]
  40. Maguire M. P., Riess R. W. The relationship of homologous synapsis and crossing over in a maize inversion. Genetics. 1994 May;137(1):281–288. doi: 10.1093/genetics/137.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Martin R., Busch W., Herrmann R. G., Wanner G. Changes in chromosomal ultrastructure during the cell cycle. Chromosome Res. 1996 Jun;4(4):288–294. doi: 10.1007/BF02263679. [DOI] [PubMed] [Google Scholar]
  42. Mazia D. Centrosomes and mitotic poles. Exp Cell Res. 1984 Jul;153(1):1–15. doi: 10.1016/0014-4827(84)90442-7. [DOI] [PubMed] [Google Scholar]
  43. McCLINTOCK B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol. 1951;16:13–47. doi: 10.1101/sqb.1951.016.01.004. [DOI] [PubMed] [Google Scholar]
  44. McClintock B. A Correlation of Ring-Shaped Chromosomes with Variegation in Zea Mays. Proc Natl Acad Sci U S A. 1932 Dec;18(12):677–681. doi: 10.1073/pnas.18.12.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. McKim K. S., Hawley R. S. Chromosomal control of meiotic cell division. Science. 1995 Dec 8;270(5242):1595–1601. doi: 10.1126/science.270.5242.1595. [DOI] [PubMed] [Google Scholar]
  46. McKim K. S., Hayashi-Hagihara A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev. 1998 Sep 15;12(18):2932–2942. doi: 10.1101/gad.12.18.2932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. McKnight T. D., Fitzgerald M. S., Shippen D. E. Plant telomeres and telomerases. A review. Biochemistry (Mosc) 1997 Nov;62(11):1224–1231. [PubMed] [Google Scholar]
  48. Nicklas R. B. How cells get the right chromosomes. Science. 1997 Jan 31;275(5300):632–637. doi: 10.1126/science.275.5300.632. [DOI] [PubMed] [Google Scholar]
  49. Padmore R., Cao L., Kleckner N. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell. 1991 Sep 20;66(6):1239–1256. doi: 10.1016/0092-8674(91)90046-2. [DOI] [PubMed] [Google Scholar]
  50. Paul A. L., Ferl R. J. Higher order chromatin structures in maize and Arabidopsis. Plant Cell. 1998 Aug;10(8):1349–1359. doi: 10.1105/tpc.10.8.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Paul A. L., Ferl R. J. Permeabilized Arabidopsis protoplasts provide new insight into the chromatin structure of plant alcohol dehydrogenase genes. Dev Genet. 1998;22(1):7–16. doi: 10.1002/(SICI)1520-6408(1998)22:1<7::AID-DVG2>3.0.CO;2-A. [DOI] [PubMed] [Google Scholar]
  52. Pollard K. J., Peterson C. L. Chromatin remodeling: a marriage between two families? Bioessays. 1998 Sep;20(9):771–780. doi: 10.1002/(SICI)1521-1878(199809)20:9<771::AID-BIES10>3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  53. Razin A. CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J. 1998 Sep 1;17(17):4905–4908. doi: 10.1093/emboj/17.17.4905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Richards E. J. DNA methylation and plant development. Trends Genet. 1997 Aug;13(8):319–323. doi: 10.1016/s0168-9525(97)01199-2. [DOI] [PubMed] [Google Scholar]
  55. Richards E. J., Dawe R. K. Plant centromeres: structure and control. Curr Opin Plant Biol. 1998 Apr;1(2):130–135. doi: 10.1016/s1369-5266(98)80014-9. [DOI] [PubMed] [Google Scholar]
  56. Rieder C. L., Salmon E. D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 1998 Aug;8(8):310–318. doi: 10.1016/s0962-8924(98)01299-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Scherthan H., Eils R., Trelles-Sticken E., Dietzel S., Cremer T., Walt H., Jauch A. Aspects of three-dimensional chromosome reorganization during the onset of human male meiotic prophase. J Cell Sci. 1998 Aug;111(Pt 16):2337–2351. doi: 10.1242/jcs.111.16.2337. [DOI] [PubMed] [Google Scholar]
  58. Scherthan H., Weich S., Schwegler H., Heyting C., Härle M., Cremer T. Centromere and telomere movements during early meiotic prophase of mouse and man are associated with the onset of chromosome pairing. J Cell Biol. 1996 Sep;134(5):1109–1125. doi: 10.1083/jcb.134.5.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Shaw P. J., Jordan E. G. The nucleolus. Annu Rev Cell Dev Biol. 1995;11:93–121. doi: 10.1146/annurev.cb.11.110195.000521. [DOI] [PubMed] [Google Scholar]
  60. Sherman J. D., Stack S. M. Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics. 1995 Oct;141(2):683–708. doi: 10.1093/genetics/141.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Shinohara A., Ogawa H., Ogawa T. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell. 1992 May 1;69(3):457–470. doi: 10.1016/0092-8674(92)90447-k. [DOI] [PubMed] [Google Scholar]
  62. Smirnova E. A., Bajer A. S. Early stages of spindle formation and independence of chromosome and microtubule cycles in Haemanthus endosperm. Cell Motil Cytoskeleton. 1998;40(1):22–37. doi: 10.1002/(SICI)1097-0169(1998)40:1<22::AID-CM3>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  63. Smirnova E. A., Bajer A. S. Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil Cytoskeleton. 1994;27(3):219–233. doi: 10.1002/cm.970270304. [DOI] [PubMed] [Google Scholar]
  64. Stoppin V., Vantard M., Schmit A. C., Lambert A. M. Isolated Plant Nuclei Nucleate Microtubule Assembly: The Nuclear Surface in Higher Plants Has Centrosome-like Activity. Plant Cell. 1994 Aug;6(8):1099–1106. doi: 10.1105/tpc.6.8.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Suzuki T., Ide N., Tanaka I. Immunocytochemical visualization of the centromeres during male and female meiosis in Lilium longiflorum. Chromosoma. 1997 Dec;106(7):435–445. doi: 10.1007/s004120050265. [DOI] [PubMed] [Google Scholar]
  66. Taunton J., Hassig C. A., Schreiber S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 1996 Apr 19;272(5260):408–411. doi: 10.1126/science.272.5260.408. [DOI] [PubMed] [Google Scholar]
  67. Vaughn K. C., Harper J. D. Microtubule-organizing centers and nucleating sites in land plants. Int Rev Cytol. 1998;181:75–149. doi: 10.1016/s0074-7696(08)60417-9. [DOI] [PubMed] [Google Scholar]
  68. Vernos I., Karsenti E. Chromosomes take the lead in spindle assembly. Trends Cell Biol. 1995 Aug;5(8):297–301. doi: 10.1016/s0962-8924(00)89045-5. [DOI] [PubMed] [Google Scholar]
  69. Wein H., Foss M., Brady B., Cande W. Z. DSK1, a novel kinesin-related protein from the diatom Cylindrotheca fusiformis that is involved in anaphase spindle elongation. J Cell Biol. 1996 May;133(3):595–604. doi: 10.1083/jcb.133.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Wolniak S. M., Larsen P. M. The timing of protein kinase activation events in the cascade that regulates mitotic progression in Tradescantia stamen hair cells. Plant Cell. 1995 Apr;7(4):431–445. doi: 10.1105/tpc.7.4.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Yu H. G., Hiatt E. N., Chan A., Sweeney M., Dawe R. K. Neocentromere-mediated chromosome movement in maize. J Cell Biol. 1997 Nov 17;139(4):831–840. doi: 10.1083/jcb.139.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES