Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 May;11(5):865–874. doi: 10.1105/tpc.11.5.865

CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake.

K H Liu 1, C Y Huang 1, Y F Tsay 1
PMCID: PMC144217  PMID: 10330471

Abstract

Higher plants have both high- and low-affinity nitrate uptake systems. These systems are generally thought to be genetically distinct. Here, we demonstrate that a well-known low-affinity nitrate uptake mutant of Arabidopsis, chl1, is also defective in high-affinity nitrate uptake. Two to 3 hr after nitrate induction, uptake activities of various chl1 mutants at 250 microM nitrate (a high-affinity concentration) were only 18 to 30% of those of wild-type plants. In these mutants, both the inducible phase and the constitutive phase of high-affinity nitrate uptake activities were reduced, with the inducible phase being severely reduced. Expressing a CHL1 cDNA driven by the cauliflower mosaic virus 35S promoter in a transgenic chl1 plant effectively recovered the defect in high-affinity uptake for the constitutive phase but not for the induced phase, which is consistent with the constitutive level of CHL1 expression in the transgenic plant. Kinetic analysis of nitrate uptake by CHL1-injected Xenopus oocytes displayed a biphasic pattern with a Michaelis-Menten Km value of approximately 50 microM for the high-affinity phase and approximately 4 mM for the low-affinity phase. These results indicate that in addition to being a low-affinity nitrate transporter, as previously recognized, CHL1 is also involved in both the inducible and constitutive phases of high-affinity nitrate uptake in Arabidopsis.

Full Text

The Full Text of this article is available as a PDF (240.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crawford N. M., Arst H. N., Jr The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet. 1993;27:115–146. doi: 10.1146/annurev.ge.27.120193.000555. [DOI] [PubMed] [Google Scholar]
  2. Crawford N. M. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995 Jul;7(7):859–868. doi: 10.1105/tpc.7.7.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Daniel-Vedele F., Filleur S., Caboche M. Nitrate transport: a key step in nitrate assimilation. Curr Opin Plant Biol. 1998 Jun;1(3):235–239. doi: 10.1016/s1369-5266(98)80110-6. [DOI] [PubMed] [Google Scholar]
  4. Filleur S., Daniel-Vedele F. Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta. 1999 Jan;207(3):461–469. doi: 10.1007/s004250050505. [DOI] [PubMed] [Google Scholar]
  5. Fu H. H., Luan S. AtKuP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell. 1998 Jan;10(1):63–73. doi: 10.1105/tpc.10.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Huang N. C., Chiang C. S., Crawford N. M., Tsay Y. F. CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell. 1996 Dec;8(12):2183–2191. doi: 10.1105/tpc.8.12.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kim E. J., Kwak J. M., Uozumi N., Schroeder J. I. AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell. 1998 Jan;10(1):51–62. doi: 10.1105/tpc.10.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lauter F. R., Ninnemann O., Bucher M., Riesmeier J. W., Frommer W. B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8139–8144. doi: 10.1073/pnas.93.15.8139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lolkema J. S., Carrasco N., Kaback H. R. Kinetic analysis of lactose exchange in proteoliposomes reconstituted with purified lac permease. Biochemistry. 1991 Feb 5;30(5):1284–1290. doi: 10.1021/bi00219a018. [DOI] [PubMed] [Google Scholar]
  10. Maurel C., Kado R. T., Guern J., Chrispeels M. J. Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP. EMBO J. 1995 Jul 3;14(13):3028–3035. doi: 10.1002/j.1460-2075.1995.tb07305.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meharg A. A., Blatt M. R. NO3- transport across the plasma membrane of Arabidopsis thaliana root hairs: kinetic control by pH and membrane voltage. J Membr Biol. 1995 May;145(1):49–66. doi: 10.1007/BF00233306. [DOI] [PubMed] [Google Scholar]
  12. Quesada A., Galván A., Fernández E. Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J. 1994 Mar;5(3):407–419. doi: 10.1111/j.1365-313x.1994.00407.x. [DOI] [PubMed] [Google Scholar]
  13. Quesada A., Krapp A., Trueman L. J., Daniel-Vedele F., Fernández E., Forde B. G., Caboche M. PCR-identification of a Nicotiana plumbaginifolia cDNA homologous to the high-affinity nitrate transporters of the crnA family. Plant Mol Biol. 1997 May;34(2):265–274. doi: 10.1023/a:1005872816881. [DOI] [PubMed] [Google Scholar]
  14. Thayer J. R., Huffaker R. C. Determination of nitrate and nitrite by high-pressure liquid chromatography: comparison with other methods for nitrate determination. Anal Biochem. 1980 Feb;102(1):110–119. doi: 10.1016/0003-2697(80)90325-5. [DOI] [PubMed] [Google Scholar]
  15. Touraine B., Glass A. D. NO3- and ClO3- fluxes in the chl1-5 mutant of Arabidopsis thaliana. Does the CHL1-5 gene encode a low-affinity NO3- transporter? Plant Physiol. 1997 May;114(1):137–144. doi: 10.1104/pp.114.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Trueman L. J., Richardson A., Forde B. G. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans. Gene. 1996 Oct 10;175(1-2):223–231. doi: 10.1016/0378-1119(96)00154-0. [DOI] [PubMed] [Google Scholar]
  17. Tsay Y. F., Schroeder J. I., Feldmann K. A., Crawford N. M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell. 1993 Mar 12;72(5):705–713. doi: 10.1016/0092-8674(93)90399-b. [DOI] [PubMed] [Google Scholar]
  18. Unkles S. E., Hawker K. L., Grieve C., Campbell E. I., Montague P., Kinghorn J. R. crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):204–208. doi: 10.1073/pnas.88.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wang R., Crawford N. M. Genetic identification of a gene involved in constitutive, high-affinity nitrate transport in higher plants. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9297–9301. doi: 10.1073/pnas.93.17.9297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang R., Liu D., Crawford N. M. The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15134–15139. doi: 10.1073/pnas.95.25.15134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zhou J. J., Theodoulou F. L., Muldin I., Ingemarsson B., Miller A. J. Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem. 1998 May 15;273(20):12017–12023. doi: 10.1074/jbc.273.20.12017. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES