Abstract
Land plants secrete a layer of wax onto their aerial surfaces that is essential for survival in a terrestrial environment. This wax is composed of long-chain, aliphatic hydrocarbons derived from very-long-chain fatty acids (VLCFAs). Using the Arabidopsis expressed sequence tag database, we have identified a gene, designated CUT1, that encodes a VLCFA condensing enzyme required for cuticular wax production. Sense suppression of CUT1 in transgenic Arabidopsis plants results in waxless (eceriferum) stems and siliques as well as conditional male sterility. Scanning electron microscopy revealed that this was a severe waxless phenotype, because stems of CUT1-suppressed plants were completely devoid of wax crystals. Furthermore, chemical analyses of waxless plants demonstrated that the stem wax load was reduced to 6 to 7% of wild-type levels. This value is lower than that reported for any of the known eceriferum mutants. The severe waxless phenotype resulted from the downregulation of both the decarbonylation and acyl reduction wax biosynthetic pathways. This result indicates that CUT1 is involved in the production of VLCFA precursors used for the synthesis of all stem wax components in Arabidopsis. In CUT1-suppressed plants, the C24 chain-length wax components predominate, suggesting that CUT1 is required for elongation of C24 VLCFAs. The unique wax composition of CUT1-suppressed plants together with the fact that the location of CUT1 on the genetic map did not coincide with any of the known ECERIFERUM loci suggest that we have identified a novel gene involved in wax biosynthesis. CUT1 is currently the only known gene with a clearly established function in wax production.
Full Text
The Full Text of this article is available as a PDF (691.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aarts M. G., Keijzer C. J., Stiekema W. J., Pereira A. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell. 1995 Dec;7(12):2115–2127. doi: 10.1105/tpc.7.12.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Bessoule J. J., Lessire R., Cassagne C. Partial purification of the acyl-CoA elongase of Allium porrum leaves. Arch Biochem Biophys. 1989 Feb 1;268(2):475–484. doi: 10.1016/0003-9861(89)90315-9. [DOI] [PubMed] [Google Scholar]
- Bognar A. L., Paliyath G., Rogers L., Kolattukudy P. E. Biosynthesis of alkanes by particulate and solubilized enzyme preparations from pea leaves (Pisum sativum). Arch Biochem Biophys. 1984 Nov 15;235(1):8–17. doi: 10.1016/0003-9861(84)90249-2. [DOI] [PubMed] [Google Scholar]
- Campos N., Boronat A. Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Cell. 1995 Dec;7(12):2163–2174. doi: 10.1105/tpc.7.12.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheesbrough T. M., Kolattukudy P. E. Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6613–6617. doi: 10.1073/pnas.81.21.6613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke R., Raynal M., Laudié M., Grellet F., Delseny M., Morris P. C., Guerrier D., Giraudat J., Quigley F., Clabault G. Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs. Plant J. 1996 Jan;9(1):101–124. doi: 10.1046/j.1365-313x.1996.09010101.x. [DOI] [PubMed] [Google Scholar]
- Elkind Y., Edwards R., Mavandad M., Hedrick S. A., Ribak O., Dixon R. A., Lamb C. J. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9057–9061. doi: 10.1073/pnas.87.22.9057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fehling E., Lessire R., Cassagne C., Mukherjee K. D. Solubilization and partial purification of constituents of acyl-CoA elongase from Lunaria annua. Biochim Biophys Acta. 1992 Jun 5;1126(1):88–94. doi: 10.1016/0005-2760(92)90221-g. [DOI] [PubMed] [Google Scholar]
- Fehling E., Mukherjee K. D. Acyl-CoA elongase from a higher plant (Lunaria annua): metabolic intermediates of very-long-chain acyl-CoA products and substrate specificity. Biochim Biophys Acta. 1991 Apr 3;1082(3):239–246. doi: 10.1016/0005-2760(91)90198-q. [DOI] [PubMed] [Google Scholar]
- Gallie D. R., Sleat D. E., Watts J. W., Turner P. C., Wilson T. M. The 5'-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res. 1987 Apr 24;15(8):3257–3273. doi: 10.1093/nar/15.8.3257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hannoufa A., Negruk V., Eisner G., Lemieux B. The CER3 gene of Arabidopsis thaliana is expressed in leaves, stems, roots, flowers and apical meristems. Plant J. 1996 Sep;10(3):459–467. doi: 10.1046/j.1365-313x.1996.10030459.x. [DOI] [PubMed] [Google Scholar]
- Hansen J. D., Pyee J., Xia Y., Wen T. J., Robertson D. S., Kolattukudy P. E., Nikolau B. J., Schnable P. S. The glossy1 locus of maize and an epidermis-specific cDNA from Kleinia odora define a class of receptor-like proteins required for the normal accumulation of cuticular waxes. Plant Physiol. 1997 Apr;113(4):1091–1100. doi: 10.1104/pp.113.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hülskamp M., Kopczak S. D., Horejsi T. F., Kihl B. K., Pruitt R. E. Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J. 1995 Nov;8(5):703–714. doi: 10.1046/j.1365-313x.1995.08050703.x. [DOI] [PubMed] [Google Scholar]
- James D. W., Jr, Lim E., Keller J., Plooy I., Ralston E., Dooner H. K. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell. 1995 Mar;7(3):309–319. doi: 10.1105/tpc.7.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenks M. A., Joly R. J., Peters P. J., Rich P. J., Axtell J. D., Ashworth E. N. Chemically Induced Cuticle Mutation Affecting Epidermal Conductance to Water Vapor and Disease Susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol. 1994 Aug;105(4):1239–1245. doi: 10.1104/pp.105.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenks M. A., Tuttle H. A., Eigenbrode S. D., Feldmann K. A. Leaf Epicuticular Waxes of the Eceriferum Mutants in Arabidopsis. Plant Physiol. 1995 May;108(1):369–377. doi: 10.1104/pp.108.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolattukudy P. E. Enzymatic synthesis of fatty alcohols in Brassica oleracea. Arch Biochem Biophys. 1971 Feb;142(2):701–709. doi: 10.1016/0003-9861(71)90536-4. [DOI] [PubMed] [Google Scholar]
- Lassner M. W., Lardizabal K., Metz J. G. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell. 1996 Feb;8(2):281–292. doi: 10.1105/tpc.8.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lolle S. J., Hsu W., Pruitt R. E. Genetic analysis of organ fusion in Arabidopsis thaliana. Genetics. 1998 Jun;149(2):607–619. doi: 10.1093/genetics/149.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer K., Shirley A. M., Cusumano J. C., Bell-Lelong D. A., Chapple C. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in Arabidopsis. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6619–6623. doi: 10.1073/pnas.95.12.6619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millar A. A., Kunst L. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J. 1997 Jul;12(1):121–131. doi: 10.1046/j.1365-313x.1997.12010121.x. [DOI] [PubMed] [Google Scholar]
- Millar A. A., Wrischer M., Kunst L. Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology. Plant Cell. 1998 Nov;10(11):1889–1902. doi: 10.1105/tpc.10.11.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Negruk V., Yang P., Subramanian M., McNevin J. P., Lemieux B. Molecular cloning and characterization of the CER2 gene of Arabidopsis thaliana. Plant J. 1996 Feb;9(2):137–145. doi: 10.1046/j.1365-313x.1996.09020137.x. [DOI] [PubMed] [Google Scholar]
- Newman T., de Bruijn F. J., Green P., Keegstra K., Kende H., McIntosh L., Ohlrogge J., Raikhel N., Somerville S., Thomashow M. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. doi: 10.1104/pp.106.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Post-Beittenmiller Dusty. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF WAX PRODUCTION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):405–430. doi: 10.1146/annurev.arplant.47.1.405. [DOI] [PubMed] [Google Scholar]
- Preuss D., Lemieux B., Yen G., Davis R. W. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev. 1993 Jun;7(6):974–985. doi: 10.1101/gad.7.6.974. [DOI] [PubMed] [Google Scholar]
- Rashotte A. M., Jenks M. A., Nguyen T. D., Feldmann K. A. Epicuticular wax variation in ecotypes of Arabidopsis thaliana. Phytochemistry. 1997 May;45(2):251–255. doi: 10.1016/s0031-9422(96)00792-3. [DOI] [PubMed] [Google Scholar]
- Reicosky D. A., Hanover J. W. Physiological Effects of Surface Waxes: I. Light Reflectance for Glaucous and Nonglaucous Picea pungens. Plant Physiol. 1978 Jul;62(1):101–104. doi: 10.1104/pp.62.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samach A., Kohalmi S. E., Motte P., Datla R., Haughn G. W. Divergence of function and regulation of class B floral organ identity genes. Plant Cell. 1997 Apr;9(4):559–570. doi: 10.1105/tpc.9.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- St-Pierre B., Laflamme P., Alarco A. M., De Luca V. The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J. 1998 Jun;14(6):703–713. doi: 10.1046/j.1365-313x.1998.00174.x. [DOI] [PubMed] [Google Scholar]
- Tacke E., Korfhage C., Michel D., Maddaloni M., Motto M., Lanzini S., Salamini F., Döring H. P. Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. Plant J. 1995 Dec;8(6):907–917. doi: 10.1046/j.1365-313x.1995.8060907.x. [DOI] [PubMed] [Google Scholar]
- Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vioque J., Kolattukudy P. E. Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves (Pisum sativum L.). Arch Biochem Biophys. 1997 Apr 1;340(1):64–72. doi: 10.1006/abbi.1997.9932. [DOI] [PubMed] [Google Scholar]
- Xia Y., Nikolau B. J., Schnable P. S. Cloning and characterization of CER2, an Arabidopsis gene that affects cuticular wax accumulation. Plant Cell. 1996 Aug;8(8):1291–1304. doi: 10.1105/tpc.8.8.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia Y., Nikolau B. J., Schnable P. S. Developmental and hormonal regulation of the arabidopsis CER2 gene that codes for a nuclear-localized protein required for the normal accumulation of cuticular waxes. Plant Physiol. 1997 Nov;115(3):925–937. doi: 10.1104/pp.115.3.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu X., Dietrich C. R., Delledonne M., Xia Y., Wen T. J., Robertson D. S., Nikolau B. J., Schnable P. S. Sequence analysis of the cloned glossy8 gene of maize suggests that it may code for a beta-ketoacyl reductase required for the biosynthesis of cuticular waxes. Plant Physiol. 1997 Oct;115(2):501–510. doi: 10.1104/pp.115.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Carvalho F., Gheysen G., Kushnir S., Van Montagu M., Inzé D., Castresana C. Suppression of beta-1,3-glucanase transgene expression in homozygous plants. EMBO J. 1992 Jul;11(7):2595–2602. doi: 10.1002/j.1460-2075.1992.tb05324.x. [DOI] [PMC free article] [PubMed] [Google Scholar]