Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 May;11(5):887–900. doi: 10.1105/tpc.11.5.887

Multicellular compartmentation of catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate

B St-Pierre 1, FA Vazquez-Flota 1, De Luca V 1
PMCID: PMC144229  PMID: 10330473

Abstract

In situ RNA hybridization and immunocytochemistry were used to establish the cellular distribution of monoterpenoid indole alkaloid biosynthesis in Madagascar periwinkle (Catharanthus roseus). Tryptophan decarboxylase (TDC) and strictosidine synthase (STR1), which are involved in the biosynthesis of the central intermediate strictosidine, and desacetoxyvindoline 4-hydroxylase (D4H) and deacetylvindoline 4-O-acetyltransferase (DAT), which are involved in the terminal steps of vindoline biosynthesis, were localized. tdc and str1 mRNAs were present in the epidermis of stems, leaves, and flower buds, whereas they appeared in most protoderm and cortical cells around the apical meristem of root tips. In marked contrast, d4h and dat mRNAs were associated with the laticifer and idioblast cells of leaves, stems, and flower buds. Immunocytochemical localization for TDC, D4H, and DAT proteins confirmed the differential localization of early and late stages of vindoline biosynthesis. Therefore, we concluded that the elaboration of the major leaf alkaloids involves the participation of at least two cell types and requires the intercellular translocation of a pathway intermediate. A basipetal gradient of expression in maturing leaves also was shown for all four genes by in situ RNA hybridization studies and by complementary studies with dissected leaves, suggesting that expression of the vindoline pathway occurs transiently during early leaf development. These results partially explain why attempts to produce vindoline by cell culture technology have failed.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. De Carolis E., Chan F., Balsevich J., De Luca V. Isolation and Characterization of a 2-Oxoglutarate Dependent Dioxygenase Involved in the Second-to-Last Step in Vindoline Biosynthesis. Plant Physiol. 1990 Nov;94(3):1323–1329. doi: 10.1104/pp.94.3.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Carolis E., De Luca V. Purification, characterization, and kinetic analysis of a 2-oxoglutarate-dependent dioxygenase involved in vindoline biosynthesis from Catharanthus roseus. J Biol Chem. 1993 Mar 15;268(8):5504–5511. [PubMed] [Google Scholar]
  3. De Luca V., Fernandez J. A., Campbell D., Kurz W. G. Developmental Regulation of Enzymes of Indole Alkaloid Biosynthesis in Catharanthus roseus. Plant Physiol. 1988 Feb;86(2):447–450. doi: 10.1104/pp.86.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Luca V., Marineau C., Brisson N. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2582–2586. doi: 10.1073/pnas.86.8.2582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deus-Neumann B., Stöckigt J., Zenk M. H. Radioimmunoassay for the quantitative determination of catharanthine. Planta Med. 1987 Apr;53(2):184–188. doi: 10.1055/s-2006-962668. [DOI] [PubMed] [Google Scholar]
  6. Endo T., Goodbody A., Misawa M. Alkaloid Production in Root and Shoot Cultures of Catharanthus roseus. Planta Med. 1987 Oct;53(5):479–482. doi: 10.1055/s-2006-962777. [DOI] [PubMed] [Google Scholar]
  7. Facchini P. J., De Luca V. Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy. Plant Cell. 1995 Nov;7(11):1811–1821. doi: 10.1105/tpc.7.11.1811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fernandez J. A., Owen T. G., Kurz W. G., De Luca V. Immunological Detection and Quantitation of Tryptophan Decarboxylase in Developing Catharanthus roseus Seedlings. Plant Physiol. 1989 Sep;91(1):79–84. doi: 10.1104/pp.91.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keene C. K., Wagner G. J. Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol. 1985 Dec;79(4):1026–1032. doi: 10.1104/pp.79.4.1026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McKnight T. D., Roessner C. A., Devagupta R., Scott A. I., Nessler C. L. Nucleotide sequence of a cDNA encoding the vacuolar protein strictosidine synthase from Catharanthus roseus. Nucleic Acids Res. 1990 Aug 25;18(16):4939–4939. doi: 10.1093/nar/18.16.4939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pasquali G., Goddijn O. J., de Waal A., Verpoorte R., Schilperoort R. A., Hoge J. H., Memelink J. Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol. 1992 Apr;18(6):1121–1131. doi: 10.1007/BF00047715. [DOI] [PubMed] [Google Scholar]
  12. Power R., Kurz W. G., De Luca V. Purification and characterization of acetylcoenzyme A: deacetylvindoline 4-O-acetyltransferase from Catharanthus roseus. Arch Biochem Biophys. 1990 Jun;279(2):370–376. doi: 10.1016/0003-9861(90)90504-r. [DOI] [PubMed] [Google Scholar]
  13. Robinson T. Metabolism and function of alkaloids in plants. Science. 1974 Apr 26;184(4135):430–435. doi: 10.1126/science.184.4135.430. [DOI] [PubMed] [Google Scholar]
  14. St-Pierre B., De Luca V. A Cytochrome P-450 Monooxygenase Catalyzes the First Step in the Conversion of Tabersonine to Vindoline in Catharanthus roseus. Plant Physiol. 1995 Sep;109(1):131–139. doi: 10.1104/pp.109.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. St-Pierre B., Laflamme P., Alarco A. M., De Luca V. The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J. 1998 Jun;14(6):703–713. doi: 10.1046/j.1365-313x.1998.00174.x. [DOI] [PubMed] [Google Scholar]
  16. Sylvester A. W., Smith L., Freeling M. Acquisition of identity in the developing leaf. Annu Rev Cell Dev Biol. 1996;12:257–304. doi: 10.1146/annurev.cellbio.12.1.257. [DOI] [PubMed] [Google Scholar]
  17. Vazquez-Flota F., De Carolis E., Alarco A. M., De Luca V. Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate dependent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don. Plant Mol Biol. 1997 Aug;34(6):935–948. doi: 10.1023/a:1005894001516. [DOI] [PubMed] [Google Scholar]
  18. Vazquez-Flota FA, De Luca V Developmental and light regulation of desacetoxyvindoline 4-hydroxylase in catharanthus roseus (L.) G. Don. . Evidence Of a multilevel regulatory mechanism . Plant Physiol. 1998 Aug;117(4):1351–1361. doi: 10.1104/pp.117.4.1351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Von Arnim Albrecht, Deng Xing-Wang. LIGHT CONTROL OF SEEDLING DEVELOPMENT. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):215–243. doi: 10.1146/annurev.arplant.47.1.215. [DOI] [PubMed] [Google Scholar]
  20. Weeks W. W., Bush L. P. Alkaloid Changes in Tobacco Seeds during Germination. Plant Physiol. 1974 Jan;53(1):73–75. doi: 10.1104/pp.53.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES