Abstract
We have characterized two maize cDNAs, rpoTm and rpoTp, that encode putative T7-like RNA polymerases. In vivo cellular localization experiments using transient expression of the green fluorescent protein suggest that their encoded proteins are targeted exclusively to mitochondria and plastids, respectively. An antibody raised against the C terminus of the rpoTp gene product identified mitochondrial polypeptides of approximately 100 kD. Their presence was correlated with RNA polymerase activity, and the antibody inhibited mitochondrial in vitro transcription activity. Together, these results strongly suggest that the product of rpoTm is involved in maize mitochondrial transcription. By contrast, immunoblot analysis and an antibody-linked polymerase assay indicated that rpoTp specifies a plastid RNA polymerase component. A quantitative reverse transcription-polymerase chain reaction assay was used to study the transcription of rpoTp and rpoTm in different tissues and under different environmental conditions. Although both genes were constitutively expressed, rpoTm transcripts were generally more prevalent in nonphotosynthetic tissues, whereas an increase in rpoTp transcripts paralleled chloroplast development. We suggest that these two genes encode constitutive components of the organelle transcription machinery but that their expression is nonetheless subject to modulation during plant development.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison L. A., Simon L. D., Maliga P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J. 1996 Jun 3;15(11):2802–2809. [PMC free article] [PubMed] [Google Scholar]
- Baumgartner B. J., Rapp J. C., Mullet J. E. Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol. 1989 Mar;89(3):1011–1018. doi: 10.1104/pp.89.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binder S., Hatzack F., Brennicke A. A novel pea mitochondrial in vitro transcription system recognizes homologous and heterologous mRNA and tRNA promoters. J Biol Chem. 1995 Sep 22;270(38):22182–22189. doi: 10.1074/jbc.270.38.22182. [DOI] [PubMed] [Google Scholar]
- Caoile A. G., Stern D. B. A conserved core element is functionally important for maize mitochondrial promoter activity in vitro. Nucleic Acids Res. 1997 Oct 15;25(20):4055–4060. doi: 10.1093/nar/25.20.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cermakian N., Ikeda T. M., Cedergren R., Gray M. W. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Nucleic Acids Res. 1996 Feb 15;24(4):648–654. doi: 10.1093/nar/24.4.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cermakian N., Ikeda T. M., Miramontes P., Lang B. F., Gray M. W., Cedergren R. On the evolution of the single-subunit RNA polymerases. J Mol Evol. 1997 Dec;45(6):671–681. doi: 10.1007/pl00006271. [DOI] [PubMed] [Google Scholar]
- Chen B., Kubelik A. R., Mohr S., Breitenberger C. A. Cloning and characterization of the Neurospora crassa cyt-5 gene. A nuclear-coded mitochondrial RNA polymerase with a polyglutamine repeat. J Biol Chem. 1996 Mar 15;271(11):6537–6544. [PubMed] [Google Scholar]
- Chiu W., Niwa Y., Zeng W., Hirano T., Kobayashi H., Sheen J. Engineered GFP as a vital reporter in plants. Curr Biol. 1996 Mar 1;6(3):325–330. doi: 10.1016/s0960-9822(02)00483-9. [DOI] [PubMed] [Google Scholar]
- Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton D. A. Nuclear gadgets in mitochondrial DNA replication and transcription. Trends Biochem Sci. 1991 Mar;16(3):107–111. doi: 10.1016/0968-0004(91)90043-u. [DOI] [PubMed] [Google Scholar]
- Cliften P. F., Park J. Y., Davis B. P., Jang S. H., Jaehning J. A. Identification of three regions essential for interaction between a sigma-like factor and core RNA polymerase. Genes Dev. 1997 Nov 1;11(21):2897–2909. doi: 10.1101/gad.11.21.2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glaser E., Sjöling S., Tanudji M., Whelan J. Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol Biol. 1998 Sep;38(1-2):311–338. doi: 10.1023/a:1006020208140. [DOI] [PubMed] [Google Scholar]
- Gray M. W., Lang B. F. Transcription in chloroplasts and mitochondria: a tale of two polymerases. Trends Microbiol. 1998 Jan;6(1):1–3. doi: 10.1016/S0966-842X(97)01182-7. [DOI] [PubMed] [Google Scholar]
- Hajdukiewicz P. T., Allison L. A., Maliga P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J. 1997 Jul 1;16(13):4041–4048. doi: 10.1093/emboj/16.13.4041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanic-Joyce P. J., Gray M. W. Accurate transcription of a plant mitochondrial gene in vitro. Mol Cell Biol. 1991 Apr;11(4):2035–2039. doi: 10.1128/mcb.11.4.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He B., Rong M., Durbin R. K., McAllister W. T. A mutant T7 RNA polymerase that is defective in RNA binding and blocked in the early stages of transcription. J Mol Biol. 1997 Jan 24;265(3):275–288. doi: 10.1006/jmbi.1996.0741. [DOI] [PubMed] [Google Scholar]
- Hedtke B., Börner T., Weihe A. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science. 1997 Aug 8;277(5327):809–811. doi: 10.1126/science.277.5327.809. [DOI] [PubMed] [Google Scholar]
- Hedtke B., Meixner M., Gillandt S., Richter E., Börner T., Weihe A. Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo. Plant J. 1999 Mar;17(5):557–561. doi: 10.1046/j.1365-313x.1999.00393.x. [DOI] [PubMed] [Google Scholar]
- Hess W. R., Prombona A., Fieder B., Subramanian A. R., Börner T. Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J. 1993 Feb;12(2):563–571. doi: 10.1002/j.1460-2075.1993.tb05688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isono K., Shimizu M., Yoshimoto K., Niwa Y., Satoh K., Yokota A., Kobayashi H. Leaf-specifically expressed genes for polypeptides destined for chloroplasts with domains of sigma70 factors of bacterial RNA polymerases in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14948–14953. doi: 10.1073/pnas.94.26.14948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kapoor S., Suzuki J. Y., Sugiura M. Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J. 1997 Feb;11(2):327–337. doi: 10.1046/j.1365-313x.1997.11020327.x. [DOI] [PubMed] [Google Scholar]
- Kestermann M., Neukirchen S., Kloppstech K., Link G. Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba). Nucleic Acids Res. 1998 Jun 1;26(11):2747–2753. doi: 10.1093/nar/26.11.2747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim M., Mullet J. E. Identification of a sequence-specific DNA binding factor required for transcription of the barley chloroplast blue light-responsive psbD-psbC promoter. Plant Cell. 1995 Sep;7(9):1445–1457. doi: 10.1105/tpc.7.9.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Köhler R. H., Zipfel W. R., Webb W. W., Hanson M. R. The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J. 1997 Mar;11(3):613–621. doi: 10.1046/j.1365-313x.1997.11030613.x. [DOI] [PubMed] [Google Scholar]
- Lang B. F., Burger G., O'Kelly C. J., Cedergren R., Golding G. B., Lemieux C., Sankoff D., Turmel M., Gray M. W. An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature. 1997 May 29;387(6632):493–497. doi: 10.1038/387493a0. [DOI] [PubMed] [Google Scholar]
- Leech R. M., Rumsby M. G., Thomson W. W. Plastid differentiation, acyl lipid, and Fatty Acid changes in developing green maize leaves. Plant Physiol. 1973 Sep;52(3):240–245. doi: 10.1104/pp.52.3.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lerbs-Mache S. Quantification of DNA-dependent RNA polymerase subunits and initiation factor(s) by antibody-linked polymerase assays. FEBS Lett. 1988 Jul 18;234(2):392–394. doi: 10.1016/0014-5793(88)80123-6. [DOI] [PubMed] [Google Scholar]
- Lerbs-Mache S. The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5509–5513. doi: 10.1073/pnas.90.12.5509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li X. Q., Zhang M., Brown G. G. Cell-Specific Expression of Mitochondrial Transcripts in Maize Seedlings. Plant Cell. 1996 Nov;8(11):1961–1975. doi: 10.1105/tpc.8.11.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisowsky T., Michaelis G. Mutations in the genes for mitochondrial RNA polymerase and a second mitochondrial transcription factor of Saccharomyces cerevisiae. Mol Gen Genet. 1989 Oct;219(1-2):125–128. doi: 10.1007/BF00261167. [DOI] [PubMed] [Google Scholar]
- Lisowsky T., Stein T., Michaelis G., Guan M. X., Chen X. J., Clark-Walker G. D. A new point mutation in the nuclear gene of yeast mitochondrial RNA polymerase, RPO41, identifies a functionally important amino-acid residue in a protein region conserved among mitochondrial core enzymes. Curr Genet. 1996 Nov;30(5):389–395. doi: 10.1007/s002940050147. [DOI] [PubMed] [Google Scholar]
- Martineau B., Taylor W. C. Photosynthetic gene expression and cellular differentiation in developing maize leaves. Plant Physiol. 1985 Jun;78(2):399–404. doi: 10.1104/pp.78.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masters B. S., Stohl L. L., Clayton D. A. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell. 1987 Oct 9;51(1):89–99. doi: 10.1016/0092-8674(87)90013-4. [DOI] [PubMed] [Google Scholar]
- McAllister W. T., Raskin C. A. The phage RNA polymerases are related to DNA polymerases and reverse transcriptases. Mol Microbiol. 1993 Oct;10(1):1–6. doi: 10.1111/j.1365-2958.1993.tb00897.x. [DOI] [PubMed] [Google Scholar]
- Moniz de Sá M., Drouin G. Phylogeny and substitution rates of angiosperm actin genes. Mol Biol Evol. 1996 Nov;13(9):1198–1212. doi: 10.1093/oxfordjournals.molbev.a025685. [DOI] [PubMed] [Google Scholar]
- Mulligan R. M., Leon P., Walbot V. Transcriptional and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol. 1991 Jan;11(1):533–543. doi: 10.1128/mcb.11.1.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oda K., Yamato K., Ohta E., Nakamura Y., Takemura M., Nozato N., Akashi K., Kanegae T., Ogura Y., Kohchi T. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol. 1992 Jan 5;223(1):1–7. doi: 10.1016/0022-2836(92)90708-r. [DOI] [PubMed] [Google Scholar]
- Oikawa K., Tanaka K., Takahashi H. Two types of differentially photo-regulated nuclear genes that encode sigma factors for chloroplast RNA polymerase in the red alga Cyanidium caldarium strain RK-1. Gene. 1998 Apr 14;210(2):277–285. doi: 10.1016/s0378-1119(98)00075-4. [DOI] [PubMed] [Google Scholar]
- Rapp W. D., Lupold D. S., Mack S., Stern D. B. Architecture of the maize mitochondrial atp1 promoter as determined by linker-scanning and point mutagenesis. Mol Cell Biol. 1993 Dec;13(12):7232–7238. doi: 10.1128/mcb.13.12.7232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rapp W. D., Stern D. B. A conserved 11 nucleotide sequence contains an essential promoter element of the maize mitochondrial atp1 gene. EMBO J. 1992 Mar;11(3):1065–1073. doi: 10.1002/j.1460-2075.1992.tb05145.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raskin C. A., Diaz G. A., McAllister W. T. T7 RNA polymerase mutants with altered promoter specificities. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3147–3151. doi: 10.1073/pnas.90.8.3147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reinbothe S., Reinbothe C., Lebedev N., Apel K. PORA and PORB, Two Light-Dependent Protochlorophyllide-Reducing Enzymes of Angiosperm Chlorophyll Biosynthesis. Plant Cell. 1996 May;8(5):763–769. doi: 10.1105/tpc.8.5.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rong M., He B., McAllister W. T., Durbin R. K. Promoter specificity determinants of T7 RNA polymerase. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):515–519. doi: 10.1073/pnas.95.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rousvoal S., Oudot M., Fontaine J., Kloareg B., Goër S. L. Witnessing the evolution of transcription in mitochondria: the mitochondrial genome of the primitive brown alga Pylaiella littoralis (L.) Kjellm. Encodes a T7-like RNA polymerase. J Mol Biol. 1998 Apr 17;277(5):1047–1057. doi: 10.1006/jmbi.1998.1679. [DOI] [PubMed] [Google Scholar]
- Serino G., Maliga P. RNA polymerase subunits encoded by the plastid rpo genes are not shared with the nucleus-encoded plastid enzyme. Plant Physiol. 1998 Aug;117(4):1165–1170. doi: 10.1104/pp.117.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shah D. M., Hightower R. C., Meagher R. B. Genes encoding actin in higher plants: intron positions are highly conserved but the coding sequences are not. J Mol Appl Genet. 1983;2(1):111–126. [PubMed] [Google Scholar]
- Sharrock R. A., Quail P. H. Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev. 1989 Nov;3(11):1745–1757. doi: 10.1101/gad.3.11.1745. [DOI] [PubMed] [Google Scholar]
- Sheen J., Hwang S., Niwa Y., Kobayashi H., Galbraith D. W. Green-fluorescent protein as a new vital marker in plant cells. Plant J. 1995 Nov;8(5):777–784. doi: 10.1046/j.1365-313x.1995.08050777.x. [DOI] [PubMed] [Google Scholar]
- Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990 Oct;2(10):1027–1038. doi: 10.1105/tpc.2.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silhavy D., Maliga P. Mapping of promoters for the nucleus-encoded plastid RNA polymerase (NEP) in the iojap maize mutant. Curr Genet. 1998 May;33(5):340–344. doi: 10.1007/s002940050345. [DOI] [PubMed] [Google Scholar]
- Small I., Wintz H., Akashi K., Mireau H. Two birds with one stone: genes that encode products targeted to two or more compartments. Plant Mol Biol. 1998 Sep;38(1-2):265–277. [PubMed] [Google Scholar]
- Soll J., Tien R. Protein translocation into and across the chloroplastic envelope membranes. Plant Mol Biol. 1998 Sep;38(1-2):191–207. [PubMed] [Google Scholar]
- Sousa R., Chung Y. J., Rose J. P., Wang B. C. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution. Nature. 1993 Aug 12;364(6438):593–599. doi: 10.1038/364593a0. [DOI] [PubMed] [Google Scholar]
- Tanaka K., Oikawa K., Ohta N., Kuroiwa H., Kuroiwa T., Takahashi H. Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga. Science. 1996 Jun 28;272(5270):1932–1935. doi: 10.1126/science.272.5270.1932. [DOI] [PubMed] [Google Scholar]
- Tanaka K., Tozawa Y., Mochizuki N., Shinozaki K., Nagatani A., Wakasa K., Takahashi H. Characterization of three cDNA species encoding plastid RNA polymerase sigma factors in Arabidopsis thaliana: evidence for the sigma factor heterogeneity in higher plant plastids. FEBS Lett. 1997 Aug 18;413(2):309–313. doi: 10.1016/s0014-5793(97)00906-x. [DOI] [PubMed] [Google Scholar]
- Tracy R. L., Stern D. B. Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr Genet. 1995 Aug;28(3):205–216. doi: 10.1007/BF00309779. [DOI] [PubMed] [Google Scholar]
- Trifa Y., Privat I., Gagnon J., Baeza L., Lerbs-Mache S. The nuclear RPL4 gene encodes a chloroplast protein that co-purifies with the T7-like transcription complex as well as plastid ribosomes. J Biol Chem. 1998 Feb 13;273(7):3980–3985. doi: 10.1074/jbc.273.7.3980. [DOI] [PubMed] [Google Scholar]
- Ulery T. L., Jang S. H., Jaehning J. A. Glucose repression of yeast mitochondrial transcription: kinetics of derepression and role of nuclear genes. Mol Cell Biol. 1994 Feb;14(2):1160–1170. doi: 10.1128/mcb.14.2.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Unseld M., Marienfeld J. R., Brandt P., Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet. 1997 Jan;15(1):57–61. doi: 10.1038/ng0197-57. [DOI] [PubMed] [Google Scholar]
- Van Dyck E., Clayton D. A. Transcription-dependent DNA transactions in the mitochondrial genome of a yeast hypersuppressive petite mutant. Mol Cell Biol. 1998 May;18(5):2976–2985. doi: 10.1128/mcb.18.5.2976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weihe A., Hedtke B., Börner T. Cloning and characterization of a cDNA encoding a bacteriophage-type RNA polymerase from the higher plant Chenopodium album. Nucleic Acids Res. 1997 Jun 15;25(12):2319–2325. doi: 10.1093/nar/25.12.2319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilcoxen S. E., Peterson C. R., Winkley C. S., Keller M. J., Jaehning J. A. Two forms of RPO41-dependent RNA polymerase. Regulation of the RNA polymerase by glucose repression may control yeast mitochondrial gene expression. J Biol Chem. 1988 Sep 5;263(25):12346–12351. [PubMed] [Google Scholar]
- Young D. A., Allen R. L., Harvey A. J., Lonsdale D. M. Characterization of a gene encoding a single-subunit bacteriophage-type RNA polymerase from maize which is alternatively spliced. Mol Gen Genet. 1998 Oct;260(1):30–37. doi: 10.1007/s004380050867. [DOI] [PubMed] [Google Scholar]