Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jun;11(6):1081–1092. doi: 10.1105/tpc.11.6.1081

Structure of a plant cell wall fragment complexed to pectate lyase C.

R D Scavetta 1, S R Herron 1, A T Hotchkiss 1, N Kita 1, N T Keen 1, J A Benen 1, H C Kester 1, J Visser 1, F Jurnak 1
PMCID: PMC144236  PMID: 10368179

Abstract

The three-dimensional structure of a complex between the pectate lyase C (PelC) R218K mutant and a plant cell wall fragment has been determined by x-ray diffraction techniques to a resolution of 2.2 A and refined to a crystallographic R factor of 18.6%. The oligosaccharide substrate, alpha-D-GalpA-([1-->4]-alpha-D-GalpA)3-(1-->4)-D-GalpA , is composed of five galacturonopyranose units (D-GalpA) linked by alpha-(1-->4) glycosidic bonds. PelC is secreted by the plant pathogen Erwinia chrysanthemi and degrades the pectate component of plant cell walls in soft rot diseases. The substrate has been trapped in crystals by using the inactive R218K mutant. Four of the five saccharide units of the substrate are well ordered and represent an atomic view of the pectate component in plant cell walls. The conformation of the pectate fragment is a mix of 21 and 31 right-handed helices. The substrate binds in a cleft, interacting primarily with positively charged groups: either lysine or arginine amino acids on PelC or the four Ca2+ ions found in the complex. The observed protein-oligosaccharide interactions provide a functional explanation for many of the invariant and conserved amino acids in the pectate lyase family of proteins. Because the R218K PelC-galacturonopentaose complex represents an intermediate in the reaction pathway, the structure also reveals important details regarding the enzymatic mechanism. Notably, the results suggest that an arginine, which is invariant in the pectate lyase superfamily, is the amino acid that initiates proton abstraction during the beta elimination cleavage of polygalacturonic acid.

Full Text

The Full Text of this article is available as a PDF (412.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkins E. D., Nieduszynski I. A., Mackie W., Parker K. D., Smolko E. E. Structural components of alginic acid. II. The crystalline structure of poly-alpha-L-guluronic acid. Results of x-ray diffraction and polarized infrared studies. Biopolymers. 1973;12(8):1879–1887. doi: 10.1002/bip.1973.360120814. [DOI] [PubMed] [Google Scholar]
  2. Bashford D., Gerwert K. Electrostatic calculations of the pKa values of ionizable groups in bacteriorhodopsin. J Mol Biol. 1992 Mar 20;224(2):473–486. doi: 10.1016/0022-2836(92)91009-e. [DOI] [PubMed] [Google Scholar]
  3. Brünger A. T. Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr D Biol Crystallogr. 1993 Jan 1;49(Pt 1):24–36. doi: 10.1107/S0907444992007352. [DOI] [PubMed] [Google Scholar]
  4. Carpita N. C., Gibeaut D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 1993 Jan;3(1):1–30. doi: 10.1111/j.1365-313x.1993.tb00007.x. [DOI] [PubMed] [Google Scholar]
  5. Di Nola A., Fabrizi G., Lamba D., Segre A. L. Solution conformation of a pectic acid fragment by 1H-NMR and molecular dynamics. Biopolymers. 1994 Apr;34(4):457–462. doi: 10.1002/bip.360340403. [DOI] [PubMed] [Google Scholar]
  6. Evans S. V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J Mol Graph. 1993 Jun;11(2):134-8, 127-8. doi: 10.1016/0263-7855(93)87009-t. [DOI] [PubMed] [Google Scholar]
  7. Gouvion C., Mazeau K., Heyraud A., Taravel F. R., Tvaroska I. Conformational study of digalacturonic acid and sodium digalacturonate in solution. Carbohydr Res. 1994 Aug 17;261(2):187–202. doi: 10.1016/0008-6215(94)84016-4. [DOI] [PubMed] [Google Scholar]
  8. Ha S. N., Giammona A., Field M., Brady J. W. A revised potential-energy surface for molecular mechanics studies of carbohydrates. Carbohydr Res. 1988 Sep 15;180(2):207–221. doi: 10.1016/0008-6215(88)80078-8. [DOI] [PubMed] [Google Scholar]
  9. Hricovini M., Bystrický S., Malovíková A. Conformations of (1----4)-linked alpha-D-galacturono-di- and -tri-saccharides in solution analysed by n.m.r. measurements and theoretical calculations. Carbohydr Res. 1991 Nov 11;220:23–31. doi: 10.1016/0008-6215(91)80003-6. [DOI] [PubMed] [Google Scholar]
  10. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
  11. Kester H. C., Visser J. Purification and characterization of polygalacturonases produced by the hyphal fungus Aspergillus niger. Biotechnol Appl Biochem. 1990 Apr;12(2):150–160. [PubMed] [Google Scholar]
  12. Kita N., Boyd C. M., Garrett M. R., Jurnak F., Keen N. T. Differential effect of site-directed mutations in pelC on pectate lyase activity, plant tissue maceration, and elicitor activity. J Biol Chem. 1996 Oct 25;271(43):26529–26535. doi: 10.1074/jbc.271.43.26529. [DOI] [PubMed] [Google Scholar]
  13. Kleywegt G. J., Jones T. A. xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. Acta Crystallogr D Biol Crystallogr. 1996 Jul 1;52(Pt 4):826–828. doi: 10.1107/S0907444995014983. [DOI] [PubMed] [Google Scholar]
  14. Lietzke S. E., Yoder M. D., Keen N. T., Jurnak F. The Three-Dimensional Structure of Pectate Lyase E, a Plant Virulence Factor from Erwinia chrysanthemi. Plant Physiol. 1994 Nov;106(3):849–862. doi: 10.1104/pp.106.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MACMILLAN J. D., VAUGHN R. H. PURIFICATION AND PROPERTIES OF A POLYGALACTURONIC ACID-TRANS-ELIMINASE PRODUCED BY CLOSTRIDIUM MULTIFERMENTANS. Biochemistry. 1964 Apr;3:564–572. doi: 10.1021/bi00892a016. [DOI] [PubMed] [Google Scholar]
  16. Mayans O., Scott M., Connerton I., Gravesen T., Benen J., Visser J., Pickersgill R., Jenkins J. Two crystal structures of pectin lyase A from Aspergillus reveal a pH driven conformational change and striking divergence in the substrate-binding clefts of pectin and pectate lyases. Structure. 1997 May 15;5(5):677–689. doi: 10.1016/s0969-2126(97)00222-0. [DOI] [PubMed] [Google Scholar]
  17. McNaught A. D. Nomenclature of carbohydrates (recommendations 1996). Adv Carbohydr Chem Biochem. 1997;52:43–177. [PubMed] [Google Scholar]
  18. Morris E. R., Powell D. A., Gidley M. J., Rees D. A. Conformations and interactions of pectins. I. Polymorphism between gel and solid states of calcium polygalacturonate. J Mol Biol. 1982 Mar 15;155(4):507–516. doi: 10.1016/0022-2836(82)90484-3. [DOI] [PubMed] [Google Scholar]
  19. Parenicová L., Benen J. A., Kester H. C., Visser J. pgaE encodes a fourth member of the endopolygalacturonase gene family from Aspergillus niger. Eur J Biochem. 1998 Jan 15;251(1-2):72–80. doi: 10.1046/j.1432-1327.1998.2510072.x. [DOI] [PubMed] [Google Scholar]
  20. Pickersgill R., Jenkins J., Harris G., Nasser W., Robert-Baudouy J. The structure of Bacillus subtilis pectate lyase in complex with calcium. Nat Struct Biol. 1994 Oct;1(10):717–723. doi: 10.1038/nsb1094-717. [DOI] [PubMed] [Google Scholar]
  21. Powell D. A., Morris E. R., Gidley M. J., Rees D. A. Conformations and interactions of pectins. II. Influences of residue sequence on chain association in calcium pectate gels. J Mol Biol. 1982 Mar 15;155(4):517–531. doi: 10.1016/0022-2836(82)90485-5. [DOI] [PubMed] [Google Scholar]
  22. Preston J. F., 3rd, Rice J. D., Ingram L. O., Keen N. T. Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemi EC16. J Bacteriol. 1992 Mar;174(6):2039–2042. doi: 10.1128/jb.174.6.2039-2042.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vitali J., Schick B., Kester H. C., Visser J., Jurnak F. The tree-dimensional structure of aspergillus niger pectin lyase B at 1.7-A resolution. Plant Physiol. 1998 Jan;116(1):69–80. doi: 10.1104/pp.116.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Weis W. I., Brünger A. T., Skehel J. J., Wiley D. C. Refinement of the influenza virus hemagglutinin by simulated annealing. J Mol Biol. 1990 Apr 20;212(4):737–761. doi: 10.1016/0022-2836(90)90234-D. [DOI] [PubMed] [Google Scholar]
  25. Yoder M. D., DeChaine D. A., Jurnak F. Preliminary crystallographic analysis of the plant pathogenic factor, pectate lyase C from Erwinia chrysanthemi. J Biol Chem. 1990 Jul 15;265(20):11429–11431. [PubMed] [Google Scholar]
  26. Yoder M. D., Jurnak F. The Refined Three-Dimensional Structure of Pectate Lyase C from Erwinia chrysanthemi at 2.2 Angstrom Resolution (Implications for an Enzymatic Mechanism). Plant Physiol. 1995 Feb;107(2):349–364. doi: 10.1104/pp.107.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yoder M. D., Keen N. T., Jurnak F. New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. Science. 1993 Jun 4;260(5113):1503–1507. doi: 10.1126/science.8502994. [DOI] [PubMed] [Google Scholar]
  28. Yuan L., Nelson B. A., Caryl G. The catalytic cysteine and histidine in the plant acyl-acyl carrier protein thioesterases. J Biol Chem. 1996 Feb 16;271(7):3417–3419. doi: 10.1074/jbc.271.7.3417. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES