Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jun;11(6):1019–1032. doi: 10.1105/tpc.11.6.1019

The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein.

I Fridborg 1, S Kuusk 1, T Moritz 1, E Sundberg 1
PMCID: PMC144241  PMID: 10368174

Abstract

shi (for short internodes), a semidominant dwarfing mutation of Arabidopsis caused by a transposon insertion, confers a phenotype typical of mutants defective in the biosynthesis of gibberellin (GA). However, the application of GA does not correct the dwarf phenotype of shi plants, suggesting that shi is defective in the perception of or in the response to GA. In agreement with this observation, the level of active GAs was elevated in shi plants, which is the result expected when feedback control of GA biosynthesis is reduced. Cloning of the SHI gene revealed that in shi, the transposon is inserted into the untranslated leader so that a cauliflower mosaic virus 35S promoter in the transposon reads out toward the SHI open reading frame. This result, together with mRNA analysis, suggests that the phenotype of the shi mutant is a result of overexpression of the SHI open reading frame. The predicted amino acid sequence of SHI has acidic and glutamine-rich stretches and shows sequence similarity over a putative zinc finger region to three presumptive Arabidopsis proteins. This suggests that SHI may act as a negative regulator of GA responses through transcriptional control.

Full Text

The Full Text of this article is available as a PDF (740.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B., Schell J., Lörz H., Fedoroff N. Transposition of the maize controlling element "Activator" in tobacco. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4844–4848. doi: 10.1073/pnas.83.13.4844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bancroft I., Dean C. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics. 1993 Aug;134(4):1221–1229. doi: 10.1093/genetics/134.4.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem. 1994 May;55(1):32–58. doi: 10.1002/jcb.240550106. [DOI] [PubMed] [Google Scholar]
  4. Chang C., Bowman J. L., DeJohn A. W., Lander E. S., Meyerowitz E. M. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6856–6860. doi: 10.1073/pnas.85.18.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chiang H. H., Hwang I., Goodman H. M. Isolation of the Arabidopsis GA4 locus. Plant Cell. 1995 Feb;7(2):195–201. doi: 10.1105/tpc.7.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clouse S. D. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J. 1996 Jul;10(1):1–8. doi: 10.1046/j.1365-313x.1996.10010001.x. [DOI] [PubMed] [Google Scholar]
  7. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gubler F., Kalla R., Roberts J. K., Jacobsen J. V. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell. 1995 Nov;7(11):1879–1891. doi: 10.1105/tpc.7.11.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harberd N. P., King K. E., Carol P., Cowling R. J., Peng J., Richards D. E. Gibberellin: inhibitor of an inhibitor of...? Bioessays. 1998 Dec;20(12):1001–1008. doi: 10.1002/(SICI)1521-1878(199812)20:12<1001::AID-BIES6>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  10. Hedden Peter, Kamiya Yuji. GIBBERELLIN BIOSYNTHESIS: Enzymes, Genes and Their Regulation. Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48(NaN):431–460. doi: 10.1146/annurev.arplant.48.1.431. [DOI] [PubMed] [Google Scholar]
  11. Hooley R. Gibberellins: perception, transduction and responses. Plant Mol Biol. 1994 Dec;26(5):1529–1555. doi: 10.1007/BF00016489. [DOI] [PubMed] [Google Scholar]
  12. Huang S., Raman A. S., Ream J. E., Fujiwara H., Cerny R. E., Brown S. M. Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol. 1998 Nov;118(3):773–781. doi: 10.1104/pp.118.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jacobsen S. E., Binkowski K. A., Olszewski N. E. SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):9292–9296. doi: 10.1073/pnas.93.17.9292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobsen S. E., Olszewski N. E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 1993 Aug;5(8):887–896. doi: 10.1105/tpc.5.8.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kraulis P. J., Raine A. R., Gadhavi P. L., Laue E. D. Structure of the DNA-binding domain of zinc GAL4. Nature. 1992 Apr 2;356(6368):448–450. doi: 10.1038/356448a0. [DOI] [PubMed] [Google Scholar]
  16. LaCasse E. C., Lefebvre Y. A. Nuclear localization signals overlap DNA- or RNA-binding domains in nucleic acid-binding proteins. Nucleic Acids Res. 1995 May 25;23(10):1647–1656. doi: 10.1093/nar/23.10.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Li J., Nagpal P., Vitart V., McMorris T. C., Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996 Apr 19;272(5260):398–401. doi: 10.1126/science.272.5260.398. [DOI] [PubMed] [Google Scholar]
  18. Long D., Goodrich J., Wilson K., Sundberg E., Martin M., Puangsomlee P., Coupland G. Ds elements on all five Arabidopsis chromosomes and assessment of their utility for transposon tagging. Plant J. 1997 Jan;11(1):145–148. doi: 10.1046/j.1365-313x.1997.11010145.x. [DOI] [PubMed] [Google Scholar]
  19. Long D., Martin M., Sundberg E., Swinburne J., Puangsomlee P., Coupland G. The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10370–10374. doi: 10.1073/pnas.90.21.10370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lovegrove A., Barratt D. H., Beale M. H., Hooley R. Gibberellin-photoaffinity labelling of two polypeptides in plant plasma membranes. Plant J. 1998 Aug;15(3):311–320. doi: 10.1046/j.1365-313x.1998.00209.x. [DOI] [PubMed] [Google Scholar]
  21. Lubas W. A., Frank D. W., Krause M., Hanover J. A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J Biol Chem. 1997 Apr 4;272(14):9316–9324. doi: 10.1074/jbc.272.14.9316. [DOI] [PubMed] [Google Scholar]
  22. Mackay J. P., Crossley M. Zinc fingers are sticking together. Trends Biochem Sci. 1998 Jan;23(1):1–4. doi: 10.1016/s0968-0004(97)01168-7. [DOI] [PubMed] [Google Scholar]
  23. Mitchell P. J., Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989 Jul 28;245(4916):371–378. doi: 10.1126/science.2667136. [DOI] [PubMed] [Google Scholar]
  24. Ogas J., Cheng J. C., Sung Z. R., Somerville C. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science. 1997 Jul 4;277(5322):91–94. doi: 10.1126/science.277.5322.91. [DOI] [PubMed] [Google Scholar]
  25. Peng J., Carol P., Richards D. E., King K. E., Cowling R. J., Murphy G. P., Harberd N. P. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev. 1997 Dec 1;11(23):3194–3205. doi: 10.1101/gad.11.23.3194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peng J., Harberd N. P. Derivative Alleles of the Arabidopsis Gibberellin-Insensitive (gai) Mutation Confer a Wild-Type Phenotype. Plant Cell. 1993 Mar;5(3):351–360. doi: 10.1105/tpc.5.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Phillips A. L., Ward D. A., Uknes S., Appleford N. E., Lange T., Huttly A. K., Gaskin P., Graebe J. E., Hedden P. Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol. 1995 Jul;108(3):1049–1057. doi: 10.1104/pp.108.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pohlman R. F., Fedoroff N. V., Messing J. The nucleotide sequence of the maize controlling element Activator. Cell. 1984 Jun;37(2):635–643. doi: 10.1016/0092-8674(84)90395-7. [DOI] [PubMed] [Google Scholar]
  29. Robertson M., Swain S. M., Chandler P. M., Olszewski N. E. Identification of a negative regulator of gibberellin action, HvSPY, in barley. Plant Cell. 1998 Jun;10(6):995–1007. doi: 10.1105/tpc.10.6.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Silverstone A. L., Ciampaglio C. N., Sun T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell. 1998 Feb;10(2):155–169. doi: 10.1105/tpc.10.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Silverstone A. L., Mak P. Y., Martínez E. C., Sun T. P. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana. Genetics. 1997 Jul;146(3):1087–1099. doi: 10.1093/genetics/146.3.1087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith D. L., Fedoroff N. V. LRP1, a gene expressed in lateral and adventitious root primordia of arabidopsis. Plant Cell. 1995 Jun;7(6):735–745. doi: 10.1105/tpc.7.6.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sponsel V. M., Schmidt F. W., Porter S. G., Nakayama M., Kohlstruk S., Estelle M. Characterization of new gibberellin-responsive semidwarf mutants of arabidopsis. Plant Physiol. 1997 Nov;115(3):1009–1020. doi: 10.1104/pp.115.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Steber C. M., Cooney S. E., McCourt P. Isolation of the GA-response mutant sly1 as a suppressor of ABI1-1 in Arabidopsis thaliana. Genetics. 1998 Jun;149(2):509–521. doi: 10.1093/genetics/149.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Swain S. M., Olszewski N. E. Genetic Analysis of Gibberellin Signal Transduction. Plant Physiol. 1996 Sep;112(1):11–17. doi: 10.1104/pp.112.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Swinburne J., Balcells L., Scofield S. R., Jones J. D., Coupland G. Elevated levels of Activator transposase mRNA are associated with high frequencies of Dissociation excision in Arabidopsis. Plant Cell. 1992 May;4(5):583–595. doi: 10.1105/tpc.4.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Truong H. N., Caboche M., Daniel-Vedele F. Sequence and characterization of two Arabidopsis thaliana cDNAs isolated by functional complementation of a yeast gln3 gdh1 mutant. FEBS Lett. 1997 Jun 30;410(2-3):213–218. doi: 10.1016/s0014-5793(97)00590-5. [DOI] [PubMed] [Google Scholar]
  38. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Verwoerd T. C., Dekker B. M., Hoekema A. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 1989 Mar 25;17(6):2362–2362. doi: 10.1093/nar/17.6.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wilson K., Long D., Swinburne J., Coupland G. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell. 1996 Apr;8(4):659–671. doi: 10.1105/tpc.8.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wilson R. N., Heckman J. W., Somerville C. R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992 Sep;100(1):403–408. doi: 10.1104/pp.100.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wilson R. N., Somerville C. R. Phenotypic Suppression of the Gibberellin-Insensitive Mutant (gai) of Arabidopsis. Plant Physiol. 1995 Jun;108(2):495–502. doi: 10.1104/pp.108.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Xu Y. L., Li L., Wu K., Peeters A. J., Gage D. A., Zeevaart J. A. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6640–6644. doi: 10.1073/pnas.92.14.6640. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES