Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1999 Jun;11(6):1061–1072. doi: 10.1105/tpc.11.6.1061

Silencing gene expression of the ethylene-forming enzyme results in a reversible inhibition of ovule development in transgenic tobacco plants

De Martinis D 1, C Mariani 1
PMCID: PMC144249  PMID: 10368177

Abstract

To study the role of ethylene in plant reproduction, we constructed transgenic tobacco plants in which the expression of a pistil-specific gene coding for the ethylene-forming enzyme 1-aminocyclopropane-1-carboxylate oxidase was inhibited. Flowers from transgenic plants showed female sterility due to an arrest in ovule development. Megasporogenesis did not occur, and ovules did not reach maturity. When pollinated, pollen tubes were able to reach the ovary but did not penetrate into the immature ovule in transgenic plants. Flower treatment with an ethylene source resulted in a functional recovery of ovule development and restored guidance of the pollen tube tip into the ovule micropyle that resulted in seed set. The recovery was abolished if inhibitors of ethylene action were present. These results demonstrate that the plant hormone ethylene is required during the very early stages of female sporogenesis and ultimately to enable fertilization.

Full Text

The Full Text of this article is available as a PDF (595.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angenent G. C., Franken J., Busscher M., Weiss D., van Tunen A. J. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J. 1994 Jan;5(1):33–44. doi: 10.1046/j.1365-313x.1994.5010033.x. [DOI] [PubMed] [Google Scholar]
  2. Angenent G. C., Franken J., Busscher M., van Dijken A., van Went J. L., Dons H. J., van Tunen A. J. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell. 1995 Oct;7(10):1569–1582. doi: 10.1105/tpc.7.10.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bui A. Q., O'Neill S. D. Three 1-aminocyclopropane-1-carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiol. 1998 Jan;116(1):419–428. doi: 10.1104/pp.116.1.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Büttner M., Singh K. B. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5961–5966. doi: 10.1073/pnas.94.11.5961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
  7. Chao Q., Rothenberg M., Solano R., Roman G., Terzaghi W., Ecker J. R. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997 Jun 27;89(7):1133–1144. doi: 10.1016/s0092-8674(00)80300-1. [DOI] [PubMed] [Google Scholar]
  8. Elliott R. C., Betzner A. S., Huttner E., Oakes M. P., Tucker W. Q., Gerentes D., Perez P., Smyth D. R. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell. 1996 Feb;8(2):155–168. doi: 10.1105/tpc.8.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldberg R. B. Plants: novel developmental processes. Science. 1988 Jun 10;240(4858):1460–1467. doi: 10.1126/science.3287622. [DOI] [PubMed] [Google Scholar]
  10. Hoekstra F. A., van Roekel T. Effects of Previous Pollination and Stylar Ethylene on Pollen Tube Growth in Petunia hybrida Styles. Plant Physiol. 1988 Jan;86(1):4–6. doi: 10.1104/pp.86.1.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hua J., Chang C., Sun Q., Meyerowitz E. M. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science. 1995 Sep 22;269(5231):1712–1714. doi: 10.1126/science.7569898. [DOI] [PubMed] [Google Scholar]
  12. Hua J., Meyerowitz E. M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell. 1998 Jul 24;94(2):261–271. doi: 10.1016/s0092-8674(00)81425-7. [DOI] [PubMed] [Google Scholar]
  13. Hua J., Sakai H., Nourizadeh S., Chen Q. G., Bleecker A. B., Ecker J. R., Meyerowitz E. M. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell. 1998 Aug;10(8):1321–1332. doi: 10.1105/tpc.10.8.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hulskamp M., Schneitz K., Pruitt R. E. Genetic Evidence for a Long-Range Activity That Directs Pollen Tube Guidance in Arabidopsis. Plant Cell. 1995 Jan;7(1):57–64. doi: 10.1105/tpc.7.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  16. Klucher K. M., Chow H., Reiser L., Fischer R. L. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell. 1996 Feb;8(2):137–153. doi: 10.1105/tpc.8.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koltunow A. M., Truettner J., Cox K. H., Wallroth M., Goldberg R. B. Different Temporal and Spatial Gene Expression Patterns Occur during Anther Development. Plant Cell. 1990 Dec;2(12):1201–1224. doi: 10.1105/tpc.2.12.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lashbrook C. C., Tieman D. M., Klee H. J. Differential regulation of the tomato ETR gene family throughout plant development. Plant J. 1998 Jul;15(2):243–252. doi: 10.1046/j.1365-313x.1998.00202.x. [DOI] [PubMed] [Google Scholar]
  19. Lawton K. A., Potter S. L., Uknes S., Ryals J. Acquired Resistance Signal Transduction in Arabidopsis Is Ethylene Independent. Plant Cell. 1994 May;6(5):581–588. doi: 10.1105/tpc.6.5.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee H. S., Huang S., Kao T. S proteins control rejection of incompatible pollen in Petunia inflata. Nature. 1994 Feb 10;367(6463):560–563. doi: 10.1038/367560a0. [DOI] [PubMed] [Google Scholar]
  21. Lincoln J. E., Cordes S., Read E., Fischer R. L. Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proc Natl Acad Sci U S A. 1987 May;84(9):2793–2797. doi: 10.1073/pnas.84.9.2793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meyer P., Saedler H. HOMOLOGY-DEPENDENT GENE SILENCING IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):23–48. doi: 10.1146/annurev.arplant.47.1.23. [DOI] [PubMed] [Google Scholar]
  23. O'Neill S. D., Nadeau J. A., Zhang X. S., Bui A. Q., Halevy A. H. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell. 1993 Apr;5(4):419–432. doi: 10.1105/tpc.5.4.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oeller P. W., Lu M. W., Taylor L. P., Pike D. A., Theologis A. Reversible inhibition of tomato fruit senescence by antisense RNA. Science. 1991 Oct 18;254(5030):437–439. doi: 10.1126/science.1925603. [DOI] [PubMed] [Google Scholar]
  25. Ohme-Takagi M., Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995 Feb;7(2):173–182. doi: 10.1105/tpc.7.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Raz V., Fluhr R. Ethylene Signal Is Transduced via Protein Phosphorylation Events in Plants. Plant Cell. 1993 May;5(5):523–530. doi: 10.1105/tpc.5.5.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sakai H., Hua J., Chen Q. G., Chang C., Medrano L. J., Bleecker A. B., Meyerowitz E. M. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5812–5817. doi: 10.1073/pnas.95.10.5812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sessa G., Raz V., Savaldi S., Fluhr R. PK12, a plant dual-specificity protein kinase of the LAMMER family, is regulated by the hormone ethylene. Plant Cell. 1996 Dec;8(12):2223–2234. doi: 10.1105/tpc.8.12.2223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Smyth D. R., Bowman J. L., Meyerowitz E. M. Early flower development in Arabidopsis. Plant Cell. 1990 Aug;2(8):755–767. doi: 10.1105/tpc.2.8.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tang X., Gomes AMTR., Bhatia A., Woodson W. R. Pistil-Specific and Ethylene-Regulated Expression of 1-Aminocyclopropane-1-Carboxylate Oxidase Genes in Petunia Flowers. Plant Cell. 1994 Sep;6(9):1227–1239. doi: 10.1105/tpc.6.9.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Theologis A. One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell. 1992 Jul 24;70(2):181–184. doi: 10.1016/0092-8674(92)90093-r. [DOI] [PubMed] [Google Scholar]
  32. Trebitsh T., Staub J. E., O'Neill S. D. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol. 1997 Mar;113(3):987–995. doi: 10.1104/pp.113.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang H., Wu H. M., Cheung A. Y. Pollination induces mRNA poly(A) tail-shortening and cell deterioration in flower transmitting tissue. Plant J. 1996 May;9(5):715–727. doi: 10.1046/j.1365-313x.1996.9050715.x. [DOI] [PubMed] [Google Scholar]
  34. Wilkinson J. Q., Lanahan M. B., Clark D. G., Bleecker A. B., Chang C., Meyerowitz E. M., Klee H. J. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol. 1997 May;15(5):444–447. doi: 10.1038/nbt0597-444. [DOI] [PubMed] [Google Scholar]
  35. Yang S. F. Ethylene evolution from 2-chloroethylphosphonic Acid. Plant Physiol. 1969 Aug;44(8):1203–1204. doi: 10.1104/pp.44.8.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Zhang X. S., O'Neill S. D. Ovary and Gametophyte Development Are Coordinately Regulated by Auxin and Ethylene following Pollination. Plant Cell. 1993 Apr;5(4):403–418. doi: 10.1105/tpc.5.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES